553
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors

, , & ORCID Icon
Pages 55-68 | Received 12 Oct 2019, Accepted 25 Dec 2019, Published online: 20 Jan 2020

References

  • Abrieux, A., Debernard, S., Maria, A., Gaertner, C., Anton, S., Gadenne, C., & Duportets, L. (2013). Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One, 8, e72785. doi:10.1371/journal.pone.0072785
  • Andretic, R., van Swinderen, B., & Greenspan, R.J. (2005). Dopaminergic modulation of arousal in Drosophila. Current Biology, 15, 1165–1175. doi:10.1016/j.cub.2005.05.025
  • Anton, S., & Gadenne, C. (1999). Effect of juvenile hormone on the central nervous processing of sex pheromone in an insect. Proceedings of the National Academy of Sciences, 96, 5764–5767. doi:10.1073/pnas.96.10.5764
  • Applebaum, S.W., & Gilbert, L.I. (1972). Stimulation of adenyl cyclase in pupal wing epidermis by -ecdysone. Developmental Biology, 27, 165–175. doi:10.1016/0012-1606(72)90095-4
  • Applebaum, S.W., & Heifetz, Y. (1999). DENSITY-DEPENDENT PHYSIOLOGICAL PHASE IN INSECTS. The Annual Review of Entomology, 44, 317–341. doi:10.1146/annurev.ento.44.1.317
  • Aranda, G.P., Hinojos, S.J., Sabandal, P.R., Evans, P.D., & Han, K.A. (2017). Behavioral sensitization to the disinhibition effect of ethanol requires the dopamine/ecdysone receptor in drosophila. Frontiers in Systems Neuroscience, 11, 56. doi:10.3389/fnsys.2017.00056
  • Arias-Carrion, O., Stamelou, M., Murillo-Rodriguez, E., Menendez-Gonzalez, M., & Poppel, E. (2010). Dopaminergic reward system: A short integrative review. International Archives of Medicine, 3, 24. doi:10.1186/1755-7682-3-24
  • Beato, M. (1989). Gene regulation by steroid hormones. Cell, 56, 335–344. doi:10.1016/0092-8674(89)90237-7
  • Beckstead, R.B., Lam, G., & Thummel, C.S. (2005). The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biology, 6, R99. doi:10.1186/gb-2005-6-12-r99
  • Blackmore, P.F., Beebe, S.J., Danforth, D.R., & Alexander, N. (1990). Progesterone and 17 alpha-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm. Journal of Biological Chemistry, 265, 1376–1380.
  • Brody, T., & Cravchik, A. (2000). Drosophila melanogaster G protein-coupled receptors. Journal of Cell Biology, 150, F83–F88. doi:10.1083/jcb.150.2.F83
  • Buzatu, S. (2009). The temperature-induced changes in membrane potential. Rivista di Biologia, 102, 199–217.
  • Chen, S., Yang, P., Jiang, F., Wei, Y., Ma, Z., & Kang, L. (2010). De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One, 5, e15633. doi:10.1371/journal.pone.0015633
  • Chintapalli, V.R., Wang, J., & Dow, J.A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 39, 715–720. doi:10.1038/ng2049
  • Chowdhury, S., Jarecki, B.W., & Chanda, B. (2014). A molecular framework for temperature-dependent gating of ion channels. Cell, 158, 1148–1158. doi:10.1016/j.cell.2014.07.026
  • Cooper, R.L., & Ruffner, M.E. (1998). Depression of synaptic efficacy at intermolt in crayfish neuromuscular junctions by 20-hydroxyecdysone, a molting hormone. Journal of Neurophysiology, 79, 1931–1941. doi:10.1152/jn.1998.79.4.1931
  • Crocker, A.D. (1997). The regulation of motor control: An evaluation of the role of dopamine receptors in the substantia nigra. Reviews in the Neurosciences, 8, 55–76. doi:10.1515/revneuro.1997.8.1.55
  • Dethier, V.G. (1976). The hungry fly: A physiological study of the behavior associated with feeding. Oxford, UK: Harvard U Press.
  • Domanitskaya, E., Anllo, L., & Schupbach, T. (2014). Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in Drosophila. Developmental Biology, 386, 408–418.
  • Elkins, T., & Ganetzky, B. (1990). Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila. Journal of Neurogenetics, 6, 207–219. doi:10.3109/01677069009107111
  • Elmogy, M., Iwami, M., & Sakurai, S. (2004). Presence of membrane ecdysone receptor in the anterior silk gland of the silkworm Bombyx mori. European Journal of Biochemistry, 271, 3171–3179. doi:10.1111/j.1432-1033.2004.04249.x
  • Elmogy, M., Terashima, J., Iga, M., Iwami, M., & Sakurai, S. (2006). A rapid increase in cAMP in response to 20-hydroxyecdysone in the anterior silk glands of the silkworm, Bombyx mori. Zoological Science, 23, 715–719. doi:10.2108/zsj.23.715
  • Engel, J.E., & Wu, C.F. (1996). Altered habituation of an identified escape circuit in Drosophila memory mutants. The Journal of Neuroscience, 16, 3486–3499. doi:10.1523/JNEUROSCI.16-10-03486.1996
  • Evans, P.D., Bayliss, A., & Reale, V. (2014). GPCR-mediated rapid, non-genomic actions of steroids: Comparisons between DmDopEcR and GPER1 (GPR30). General and Comparative Endocrinology, 195, 157–163. doi:10.1016/j.ygcen.2013.10.015
  • Evans, R.M. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240, 889–895. doi:10.1126/science.3283939
  • Feldman, R.D., & Limbird, L.E. (2017). GPER (GPR30): A nongenomic receptor (GPCR) for Steroid hormones with implications for cardiovascular disease and cancer. Annual Review of Pharmacology and Toxicology, 57, 567–584. doi:10.1146/annurev-pharmtox-010716-104651
  • Feng, G., Hannan, F., Reale, V., Hon, Y.Y., Kousky, C.T., Evans, P.D., & Hall, L.M. (1996). Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. The Journal of Neuroscience, 16, 3925–3933. doi:10.1523/JNEUROSCI.16-12-03925.1996
  • Filardo, E.J., & Thomas, P. (2005). GPR30: A seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends in Endocrinology and Metabolism, 16, 362–367. doi:10.1016/j.tem.2005.08.005
  • Filardo, E.J., Quinn, J.A., Frackelton, A.R., Jr., & Bland, K.I. (2002). Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Journal of Molecular Endocrinology, 16, 70–84. doi:10.1210/mend.16.1.0758
  • Flatt, T., Heyland, A., Rus, F., Porpiglia, E., Sherlock, C., Yamamoto, R., … Silverman, N. (2008). Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. Journal of Experimental Biology, 211, 2712–2724. doi:10.1242/jeb.014878
  • Foster, D.J., & Conn, P.J. (2017). Allosteric modulation of GPCRs: New insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron, 94, 431–446. doi:10.1016/j.neuron.2017.03.016
  • Gaziova, I., Bonnette, P.C., Henrich, V.C., & Jindra, M. (2004). Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis. Development, 131, 2715–2725.
  • Gilestro, G.F. (2012). Video tracking and analysis of sleep in Drosophila melanogaster. Nature Protocols, 7, 995–1007. doi:10.1038/nprot.2012.041
  • Gotzes, F., Balfanz, S., & Baumann, A. (1994). Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors. Receptors & Channels, 2, 131–141.
  • Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., … Celniker, S.E. (2011). The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479. doi:10.1038/nature09715
  • Gray, L.J., Sword, G.A., Anstey, M.L., Clissold, F.J., & Simpson, S.J. (2009). Behavioural phase polyphenism in the Australian plague locust (Chortoicetes terminifera). Biology Letters, 5, 306–309. doi:10.1098/rsbl.2008.0764
  • Groeneweg, F.L., Karst, H., de Kloet, E.R., & Joels, M. (2012). Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 350, 299–309. doi:10.1016/j.mce.2011.06.020
  • Gros, R., Ding, Q., Sklar, L.A., Prossnitz, E.E., Arterburn, J.B., Chorazyczewski, J., & Feldman, R.D. (2011). GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension, 57, 442–451. doi:10.1161/HYPERTENSIONAHA.110.161653
  • Gruntenko, N., Chentsova, N.A., Bogomolova, E.V., Karpova, E.K., Glazko, G.V., Faddeeva, N.V., … Rauschenbach, I.Y. (2004). The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses. Archives of Insect Biochemistry and Physiology, 55, 55–67. doi:10.1002/arch.10123
  • Gruntenko, N.E., Adonyeva, N.V., Burdina, E.V., Karpova, E.K., Andreenkova, O.V., Gladkikh, D.V., … Rauschenbach, I.Y. (2016). The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biology Open, 5, 1706–1711. doi:10.1242/bio.022038
  • Gruntenko, N.E., Karpova, E.K., Adonyeva, N.V., Chentsova, N.A., Faddeeva, N.V., Alekseev, A.A., & Rauschenbach, I.Y. (2005). Juvenile hormone, 20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. Journal of Insect Physiology, 51, 417–425. doi:10.1016/j.jinsphys.2005.01.007
  • Hall, J.C. (1994). The mating of a fly. Science, 264, 1702–1714. doi:10.1126/science.8209251
  • Hasbi, A., O’Dowd, B.F., & George, S.R. (2005). A G protein-coupled receptor for estrogen: The end of the search? Molecular Interventions, 5, 158–161. doi:10.1124/mi.5.3.5
  • Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., & Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138. doi:10.1016/S0896-6273(00)80877-6
  • Hewes, R.S., & Taghert, P.H. (2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research, 11, 1126–1142. doi:10.1101/gr.169901
  • Hirashima, A., Rauschenbach, I., & Sukhanova, M. (2000). Ecdysteroids in stress responsive and nonresponsive Drosophila virilis lines under stress conditions. Bioscience, Biotechnology, and Biochemistry, 64, 2657–2662. doi:10.1271/bbb.64.2657
  • Hirashima, A., Sukhanova, M., & Rauschenbach, I. (2000b). Genetic control of biogenic-amine systems in Drosophila under normal and stress conditions. Biochemical Genetics, 38, 167–180.
  • Hosie, A.M., Wilkins, M.E., da Silva, H.M., & Smart, T.G. (2006). Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 444, 486–489. doi:10.1038/nature05324
  • Hossain, M.S., Mineno, K., & Katafuchi, T. (2016). Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLoS One, 11, e0150846. doi:10.1371/journal.pone.0150846
  • Huang, B., & Gitler, A.D. (2018). Hunting the G-unit in Huntington’s. Brain, 141, 1586–1589. doi:10.1093/brain/awy112
  • Inagaki, H.K., Ben-Tabou de-Leon, S., Wong, A.M., Jagadish, S., Ishimoto, H., Barnea, G., … Anderson, D.J. (2012). Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell, 148, 583–595. doi:10.1016/j.cell.2011.12.022
  • Inagaki, H.K., Panse, K.M., & Anderson, D.J. (2014). Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84, 806–820. doi:10.1016/j.neuron.2014.09.032
  • Inanobe, A., & Kurachi, Y. (2014). Membrane channels as integrators of G-protein-mediated signaling. Biochimica et Biophysica Acta, 1838, 521–531. doi:10.1016/j.bbamem.2013.08.018
  • Ishimoto, H., & Kitamoto, T. (2010). The steroid molting hormone Ecdysone regulates sleep in adult Drosophila melanogaster. Genetics, 185, 269–281. doi:10.1534/genetics.110.114587
  • Ishimoto, H., & Kitamoto, T. (2011). Beyond molting–roles of the steroid molting hormone ecdysone in regulation of memory and sleep in adult Drosophila. Fly, 5, 215–220. doi:10.4161/fly.5.3.15477
  • Ishimoto, H., Sakai, T., & Kitamoto, T. (2009). Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 106, 6381–6386. doi:10.1073/pnas.0810213106
  • Ishimoto, H., Wang, Z., Rao, Y., Wu, C.F., & Kitamoto, T. (2013). A novel role for ecdysone in Drosophila conditioned behavior: Linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain. PLoS Genetics, 9, e1003843. doi:10.1371/journal.pgen.1003843
  • Ivanova, L., Bernhardt, R., & Bernhardt, I. (2008). Nongenomic effect of aldosterone on ion transport pathways of red blood cells. Cellular Physiology and Biochemistry, 22, 269–278. doi:10.1159/000149805
  • Kang, X.L., Zhang, J.Y., Wang, D., Zhao, Y.M., Han, X.L., Wang, J.X., & Zhao, X.F. (2019). The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genetics, 15, e1008331. doi:10.1371/journal.pgen.1008331
  • Karam, C.S., Jones, S.K., & Javitch, J.A. (2019). Come Fly with Me: An overview of dopamine receptors in Drosophila melanogaster. Basic & Clinical Pharmacology & Toxicology. [published online ahead of print, 2019 Jun 20]. doi:10.1111/bcpt.13277
  • Kastenberger, I., & Schwarzer, C. (2014). GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Hormones and Behavior, 66, 628–636. doi:10.1016/j.yhbeh.2014.09.001
  • Kasture, A.S., Hummel, T., Sucic, S., & Freissmuth, M. (2018). Big lessons from tiny flies: Drosophila melanogaster as a model to explore dysfunction of dopaminergic and serotonergic neurotransmitter systems. International Journal of Molecular Sciences, 19, 1788.
  • Keene, A.C., Duboue, E.R., McDonald, D.M., Dus, M., Suh, G.S., Waddell, S., & Blau, J. (2010). Clock and cycle limit starvation-induced sleep loss in Drosophila. Current Biology, 20, 1209–1215. doi:10.1016/j.cub.2010.05.029
  • Kiernan, M.C., Cikurel, K., & Bostock, H. (2001). Effects of temperature on the excitability properties of human motor axons. Brain, 124, 816–825. doi:10.1093/brain/124.4.816
  • Knapp, E., & Sun, J. (2017). Steroid signaling in mature follicles is important for Drosophila ovulation. Proceedings of the National Academy of Sciences of the United States of America, 114, 699–704. doi:10.1073/pnas.1614383114
  • Kong, E.C., Woo, K., Li, H., Lebestky, T., Mayer, N., Sniffen, M.R., … Wolf, F.W. (2010). A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One, 5, e9954. doi:10.1371/journal.pone.0009954
  • Kume, K., Kume, S., Park, S.K., Hirsh, J., & Jackson, F.R. (2005). Dopamine is a regulator of arousal in the fruit fly. The Journal of Neuroscience, 25, 7377–7384. doi:10.1523/JNEUROSCI.2048-05.2005
  • Lark, A., Kitamoto, T., & Martin, J.R. (2017). Modulation of neuronal activity in the Drosophila mushroom body by DopEcR, a unique dual receptor for ecdysone and dopamine. Biochimica et Biophysica Acta, 1864, 1578–1588. doi:10.1016/j.bbamcr.2017.05.015
  • Leader, D.P., Krause, S.A., Pandit, A., Davies, S.A., & Dow, J.A.T. (2018). FlyAtlas 2: A new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Research, 46, D809–D815. doi:10.1093/nar/gkx976
  • Linford, N.J., Ro, J., Chung, B.Y., & Pletcher, S.D. (2015). Gustatory and metabolic perception of nutrient stress in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 112, 2587–2592. doi:10.1073/pnas.1401501112
  • Ma, Z., Guo, W., Guo, X., Wang, X., & Kang, L. (2011). Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proceedings of the National Academy of Sciences, 108, 3882–3887. doi:10.1073/pnas.1015098108
  • Mao, Z., & Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3, 5.doi:10.3389/neuro.04.005.2009
  • McDonald, D.M., & Keene, A.C. (2010). The sleep-feeding conflict: Understanding behavioral integration through genetic analysis in Drosophila. Aging (Albany NY), 2, 519–522. doi:10.18632/aging.100181
  • McEwen, B.S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185. doi:10.1016/j.ejphar.2007.11.071
  • Meiselman, M.R., Kingan, T.G., & Adams, M.E. (2018). Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biology, 16, 18. doi:10.1186/s12915-018-0484-9
  • Melnattur, K., & Shaw, P. (2019). Staying awake to stay alive: A circuit controlling starvation-induced waking. PLoS Biology, 17, e3000199. doi:10.1371/journal.pbio.3000199
  • Mo, C., Renoir, T., & Hannan, A.J. (2014). Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice. Neurobiology of Disease, 71, 81–94. doi:10.1016/j.nbd.2014.07.008
  • Moro, L., Reineri, S., Piranda, D., Pietrapiana, D., Lova, P., Bertoni, A., … Sinigaglia, F. (2005). Nongenomic effects of 17beta-estradiol in human platelets: Potentiation of thrombin-induced aggregation through estrogen receptor beta and Src kinase. Blood, 105, 115–121. doi:10.1182/blood-2003-11-3840
  • Nagan, N., & Zoeller, R.A. (2001). Plasmalogens: Biosynthesis and functions. Progress in Lipid Research, 40, 199–229. doi:10.1016/S0163-7827(01)00003-0
  • Neckameyer, W.S., & Weinstein, J.S. (2005). Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress, 8, 117–131. doi:10.1080/10253890500147381
  • Nesse, R.M., Bhatnagar, S., & Ellis, B. (2016) Evolutionary origins and functions of the stress response system. In G. Fink (Ed.), Stress: Concepts, cognition, emotion, and behavior (pp. 95–101). Cambridge, MA: Academic Press.
  • Okamoto, N., Viswanatha, R., Bittar, R., Li, Z., Haga-Yamanaka, S., Perrimon, N., & Yamanaka, N. (2018). A membrane transporter is required for steroid hormone uptake in drosophila. Developmental Cell, 47, 294–305.e297. doi:10.1016/j.devcel.2018.09.012
  • Ostrowski, D., Kahsai, L., Kramer, E.F., Knutson, P., & Zars, T. (2015). Place memory retention in Drosophila. Neurobiology of Learning and Memory, 123, 217–224. doi:10.1016/j.nlm.2015.06.015
  • Park-Chung, M., Wu, F.S., Purdy, R.H., Malayev, A.A., Gibbs, T.T., & Farb, D.H. (1997). Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Molecular Pharmacology, 52, 1113–1123. doi:10.1124/mol.52.6.1113
  • Petruccelli, E., Li, Q., Rao, Y., & Kitamoto, T. (2016). The unique dopamine/ecdysteroid receptor modulates ethanol-induced sedation in drosophila. The Journal of Neuroscience, 36, 4647–4657. doi:10.1523/JNEUROSCI.3774-15.2016
  • Prager, E.M., Brielmaier, J., Bergstrom, H.C., McGuire, J., & Johnson, L.R. (2010). Localization of mineralocorticoid receptors at mammalian synapses. PLoS One, 5, e14344. doi:10.1371/journal.pone.0014344
  • Prossnitz, E.R., & Barton, M. (2011). The G-protein-coupled estrogen receptor GPER in health and disease. Nature Reviews Endocrinology, 7, 715–726. doi:10.1038/nrendo.2011.122
  • Rauschenbach, I.Y., Bogomolova, E.V., Gruntenko, N.E., Adonyeva, N.V., & Chentsova, N.A. (2007). Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. Journal of Insect Physiology, 53, 587–591. doi:10.1016/j.jinsphys.2007.02.011
  • Rauschenbach, I.Y., Sukhanova, M.Z., Hirashima, A., Sutsugu, E., & Kuano, E. (2000). Role of the ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady Biological Sciences, 375, 641–643. doi:10.1023/A:1026610425973
  • Revankar, C.M., Cimino, D.F., Sklar, L.A., Arterburn, J.B., & Prossnitz, E.R. (2005). A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science, 307, 1625–1630. doi:10.1126/science.1106943
  • Revankar, C.M., Mitchell, H.D., Field, A.S., Burai, R., Corona, C., Ramesh, C., … Prossnitz, E.R. (2007). Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chemical Biology, 2, 536–544. doi:10.1021/cb700072n
  • Reynolds, S.R., & Foster, F.I. (1939). Peripheral vascular action of estrogen in the human male. Journal of Clinical Investigation, 18, 649–655. doi:10.1172/JCI101080
  • Riddiford, L.M. (1993) Hormones and drosophila development. In M. Bate & A.M. Arias (Eds.), The development of Drosophila melanogaster (pp. 899–929). New York, NY: Cold Spring Harbor Laboratory Press.
  • Roessingh, P., Bouaı¨Chi, A., & Simpson, S.J. (1998). Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. Journal of Insect Physiology, 44, 883–893. doi:10.1016/S0022-1910(98)00070-5
  • Ruffner, M.E., Cromarty, S.I., & Cooper, R.L. (1999). Depression of synaptic efficacy in high- and low-output Drosophila neuromuscular junctions by the molting hormone (20-HE). Journal of Neurophysiology, 81, 788–794. doi:10.1152/jn.1999.81.2.788
  • Sass, M., Csikos, G., Komuves, L., & Kovacs, J. (1983). Cyclic AMP in the fat body of Mamestra brassicae during the last instar and its possible involvement in the cellular autophagocytosis induced by 20-Hydroxyecdysone. General and Comparative Endocrinology, 50, 116–123. doi:10.1016/0016-6480(83)90248-4
  • Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 138, 32–32. doi:10.1038/138032a0
  • Selye, H. (1942). Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology, 30, 437–453. doi:10.1210/endo-30-3-437
  • Shaw, P.J., Cirelli, C., Greenspan, R.J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837. doi:10.1126/science.287.5459.1834
  • Shivaji, S., & Jagannadham, M.V. (1992). Steroid-induced perturbations of membranes and its relevance to sperm acrosome reaction. Biochimica et Biophysica Acta, 1108, 99–109. doi:10.1016/0005-2736(92)90119-7
  • Siegel, R.W., & Hall, J.C. (1979). Conditioned responses in courtship behavior of normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 76, 3430–3434. doi:10.1073/pnas.76.7.3430
  • Simon, A.F., Shih, C., Mack, A., & Benzer, S. (2003). Steroid control of longevity in Drosophila melanogaster. Science, 299, 1407–1410. doi:10.1126/science.1080539
  • Simpson, S.J., Despland, E., Hagele, B.F., & Dodgson, T. (2001). Gregarious behavior in desert locusts is evoked by touching their back legs. Proceedings of the National Academy of Sciences, 98, 3895–3897. doi:10.1073/pnas.071527998
  • Singh, A.H., Wolf, D.M., Wang, P., & Arkin, A.P. (2008). Modularity of stress response evolution. Proceedings of the National Academy of Sciences of the United States of America, 105, 7500–7505. doi:10.1073/pnas.0709764105
  • Singh, M. (2014). Mood, food, and obesity. Frontiers in Psychology, 5, 925.doi:10.3389/fpsyg.2014.00925
  • Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208, 337–351. doi:10.1006/dbio.1999.9210
  • Song, H., Li, H., Guo, S., Pan, Y., Fu, Y., Zhou, Z., … Lu, B. (2018). Targeting Gpr52 lowers mutant HTT levels and rescues Huntington’s disease-associated phenotypes. Brain, 141, 1782–1798. doi:10.1093/brain/awy081
  • Srivastava, D.P., Yu, E.J., Kennedy, K., Chatwin, H., Reale, V., Hamon, M., … Evans, P.D. (2005). Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. The Journal of Neuroscience, 25, 6145–6155. doi:10.1523/JNEUROSCI.1005-05.2005
  • Stapleton, M., Carlson, J., Brokstein, P., Yu, C., Champe, M., George, R., … Celniker, S.E. (2002). A Drosophila full-length cDNA resource. Genome Biology, 3, research0080.1. doi:10.1186/gb-2002-3-12-research0080
  • Sun, L., Gilligan, J., Staber, C., Schutte, R.J., Nguyen, V., O’Dowd, D.K., & Reenan, R. (2012). A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. The Journal of Neuroscience, 32, 14145–14155. doi:10.1523/JNEUROSCI.2932-12.2012
  • Suzuki, D.T., Grigliatti, T., & Williamson, R. (1971). Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proceedings of the National Academy of Sciences of the United States of America, 68, 890–893. doi:10.1073/pnas.68.5.890
  • Tanouye, M.A., & Wyman, R.J. (1980). Motor outputs of giant nerve fiber in Drosophila. Journal of Neurophysiology, 44, 405–421. doi:10.1152/jn.1980.44.2.405
  • Tawfik, A.I., & Sehnal, F. (2003). A role for ecdysteroids in the phase polymorphism of the desert locust. Physiological Entomology, 28, 19–24. doi:10.1046/j.1365-3032.2003.00316.x
  • Terashima, J., & Bownes, M. (2004). Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics, 167, 1711–1719. doi:10.1534/genetics.103.024323
  • Terashima, J., Takaki, K., Sakurai, S., & Bownes, M. (2005). Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. Journal of Endocrinology, 187, 69–79. doi:10.1677/joe.1.06220
  • Terashima, J., Yasuhara, N., Iwami, M., Sakurai, S., & Sakurai, S. (2000). Programmed cell death triggered by insect steroid hormone, 20-hydroxyecdysone, in the anterior silk gland of the silkworm, Bombyx mori. Development Genes and Evolution, 210, 545–558. doi:10.1007/s004270000100
  • Thummel, C.S. (1996). Flies on steroids–Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends in Genetics, 12, 306–310. doi:10.1016/0168-9525(96)10032-9
  • Villella, A., & Hall, J.C. (2008). Neurogenetics of courtship and mating in Drosophila. Advances in Genetics, 62, 67–184. doi:10.1016/S0065-2660(08)00603-2
  • Vivacqua, A., Bonofiglio, D., Recchia, A.G., Musti, A.M., Picard, D., Ando, S., & Maggiolini, M. (2006). The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Molecular Endocrinology, 20, 631–646. doi:10.1210/me.2005-0280
  • Wang, C., Dehghani, B., Magrisso, I.J., Rick, E.A., Bonhomme, E., Cody, D.B., … Offner, H. (2008). GPR30 contributes to estrogen-induced thymic atrophy. Molecular Endocrinology, 22, 636–648. doi:10.1210/me.2007-0359
  • Wang, Q.P., Lin, Y.Q., Zhang, L., Wilson, Y.A., Oyston, L.J., Cotterell, J., … Neely, G.G. (2016). Sucralose promotes food intake through NPY and a neuronal fasting response. Cell Metabolism, 24, 75–90. doi:10.1016/j.cmet.2016.06.010
  • Whiting, K.P., Restall, C.J., & Brain, P.F. (2000). Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sciences, 67, 743–757. doi:10.1016/S0024-3205(00)00669-X
  • Winter, D.C., Schneider, M.F., O’Sullivan, G.C., Harvey, B.J., & Geibel, J.P. (1999). Rapid effects of aldosterone on sodium-hydrogen exchange in isolated colonic crypts. The Journal of Membrane Biology, 170, 17–26. doi:10.1007/s002329900534
  • Wolf, F.W., Rodan, A.R., Tsai, L.T., & Heberlein, U. (2002). High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. The Journal of Neuroscience, 22, 11035–11044. doi:10.1523/JNEUROSCI.22-24-11035.2002
  • Wyman, R.J., Thomas, J.B., Salkoff, L., & King, D.G. (1984) The Drosopohila giant fiber system. New York, NY: Plenum.
  • Xia, S., Yang, J., Su, Y., Qian, J., Ma, E., & Haddad, G.G. (2005). Identification of new targets of Drosophila pre-mRNA adenosine deaminase. Physiological Genomics, 20, 195–202. doi:10.1152/physiolgenomics.00093.2003
  • Yamamoto, S., & Seto, E.S. (2014). Dopamine dynamics and signaling in Drosophila: An overview of genes, drugs and behavioral paradigms. Experimental Animals, 63, 107–119. doi:10.1538/expanim.63.107
  • Yamanaka, N., Marqués, G., & O’Connor, M.B. (2015). Vesicle-mediated steroid hormone secretion in Drosophila melanogaster. Cell, 163, 907–919. doi:10.1016/j.cell.2015.10.022
  • Yamanaka, N., Rewitz, K.F., & O’Connor, M.B. (2013). Ecdysone control of developmental transitions: Lessons from Drosophila research. The Annual Review of Entomology, 58, 497–516. doi:10.1146/annurev-ento-120811-153608
  • Yao, Y., Cui, X., Al-Ramahi, I., Sun, X., Li, B., Hou, J., … Lu, B. (2015). A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife, 4, e05449. doi:10.7554/eLife.05449
  • Yurgel, M.E., Kakad, P., Zandawala, M., Nassel, D.R., Godenschwege, T.A., & Keene, A.C. (2019). A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. PLoS Biology, 17, e2006409. doi:10.1371/journal.pbio.2006409
  • Zheng, W., Ocorr, K., & Tatar, M. (2019). Extra-cellular matrix induced by steroids through a G-protein coupled receptor in a Drosophila model of renal fibrosis. bioRxiv, 653329.
  • Zheng, W., Rus, F., Hernandez, A., Kang, P., Goldman, W., Silverman, N., & Tatar, M. (2018). Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biol, 16, 60. doi:10.1186/s12915-018-0532-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.