719
Views
3
CrossRef citations to date
0
Altmetric
Perspectives

Towards a functional connectome in Drosophila

ORCID Icon
Pages 156-161 | Received 29 Aug 2019, Accepted 01 Jan 2020, Published online: 17 Jan 2020

References

  • Ache, J.M., Namiki, S., Lee, A., Branson, K., & Card, G.M. (2019). State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nature Neuroscience, 22, 1132–1139. doi:10.1038/s41593-019-0413-4
  • Aso, Y., Ray, R.P., Long, X., Bushey, D., Cichewicz, K., Ngo, T.-T., … Rubin, G.M. (2019). Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. ELife, 8, pii: e49257. doi:10.7554/eLife.49257
  • Bargmann, C.I. (2012). Beyond the connectome: How neuromodulators shape neural circuits. BioEssays, 34, 458–465. doi:10.1002/bies.201100185
  • Bargmann, C.I., & Marder, E. (2013). From the connectome to brain function. Nature Methods, 10, 483–490. doi:10.1038/nmeth.2451
  • Bentley, B., Branicky, R., Barnes, C.L., Chew, Y.L., Yemini, E., Bullmore, E.T., … Schafer, W.R. (2016). The multilayer connectome of Caenorhabditis elegans. PLoS Computational Biology, 12, e1005283. doi:10.1371/journal.pcbi.1005283
  • Berck, M.E., Khandelwal, A., Claus, L., Hernandez-Nunez, L., Si, G., Tabone, C.J., … Cardona, A. (2016). The wiring diagram of a glomerular olfactory system. ELife, 5, pii: e14859. doi:10.7554/eLife.14859
  • Blenau, W., Daniel, S., Balfanz, S., Thamm, M., & Baumann, A. (2017). Dm5-HT2B: pharmacological characterization of the fifth serotonin receptor subtype of Drosophila melanogaster. Frontiers in Systems Neuroscience, 11, 28. doi:10.3389/fnsys.2017.00028
  • Blenau, W., & Thamm, M. (2011). Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies. Lessons from Drosophila melanogaster and Apis mellifera. Arthropod Structure & Development, 40, 381–394. doi:10.1016/j.asd.2011.01.004
  • Brunet Avalos, C., Maier, G.L., Bruggmann, R., & Sprecher, S.G. (2019). Single cell transcriptome atlas of the Drosophila larval brain. ELife, 8, pii: e50354. doi:10.7554/eLife.50354
  • Cheng, K.Y., Colbath, R.A., & Frye, M.A. (2019). Olfactory and neuromodulatory signals reverse visual object avoidance to approach in Drosophila. Current Biology, 29, 2058–2065.e2. doi:10.1016/j.cub.2019.05.010
  • Cohn, R., Morantte, I., & Ruta, V. (2015). Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell, 163, 1742–1755. doi:10.1016/j.cell.2015.11.019
  • Croset, V., Treiber, C.D., & Waddell, S. (2018). Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. ELife, 7, pii: e34550. doi:10.7554/eLife.34550
  • Curto, C., & Morrison, K. (2019). Relating network connectivity to dynamics: Opportunities and challenges for theoretical neuroscience. Current Opinion in Neurobiology, 58, 11–20. doi:10.1016/j.conb.2019.06.003
  • Daubert, E.A., & Condron, B.G. (2010). Serotonin: A regulator of neuronal morphology and circuitry. Trends in Neurosciences, 33, 424–434. doi:10.1016/j.tins.2010.05.005
  • Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., … Aerts, S. (2018). A single-cell transcriptome atlas of the aging Drosophila brain. Cell, 174, 982–998.e20. doi:10.1016/j.cell.2018.05.057
  • Davis, F.P., Nern, A., Picard, S., Reiser, M.B., Rubin, G.M., Eddy, S.R., & Henry, G.L. (2019). A genetic, genomic, and computational resource for exploring neural circuit function. BioRxiv, 385476. doi:10.1101/385476
  • Demchyshyn, L.L., Pristupa, Z.B., Sugamori, K.S., Barker, E.L., Blakely, R.D., Wolfgang, W.J., … Niznik, H.B. (1994). Cloning, expression, and localization of a chloride-facilitated, cocaine-sensitive serotonin transporter from Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 91, 5158–5162. doi:10.1073/pnas.91.11.5158
  • De-Miguel, F.F., & Trueta, C. (2005). Synaptic and extrasynaptic secretion of serotonin. Cellular and Molecular Neurobiology, 25, 297–312. doi:10.1007/s10571-005-3061-z
  • Dolan, M.-J., Frechter, S., Bates, A.S., Dan, C., Huoviala, P., Roberts, R.J., … Jefferis, G.S. (2019). Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. ELife, 8, pii: e43079. doi:10.7554/eLife.43079
  • Eschbach, C., Fushiki, A., Winding, M., Schneider-Mizell, C.M., Shao, M., Arruda, R., … Zlatic, M. (2019). Multilevel feedback architecture for adaptive regulation of learning in the insect brain. BioRxiv, 649731. doi:10.1101/649731
  • Felsenberg, J., Jacob, P.F., Walker, T., Barnstedt, O., Edmondson-Stait, A.J., Pleijzier, M.W., … Waddell, S. (2018). Integration of parallel opposing memories underlies memory extinction. Cell, 175, 709–722.e15. doi:10.1016/j.cell.2018.08.021
  • Fuxe, K., & Borroto-Escuela, D. (2016). Volume transmission and receptor–receptor interactions in heteroreceptor complexes: Understanding the role of new concepts for brain communication. Neural Regeneration Research, 11, 1220. doi:10.4103/1673-5374.189168
  • Gorostiza, E.A., Colomb, J., & Brembs, B. (2016). A decision underlies phototaxis in an insect. Open Biology, 6, 160229. doi:10.1098/rsob.160229
  • Gschweng, K.M.M., Sampson, M.M., Hardcastle, B.J., Sizemore, T.R., Dacks, A.M., Frye, M.A., & Krantz, D.E. (2019). Serotonergic modulation of a visual microcircuit in Drosophila melanogaster. BioRxiv, 619759. doi:10.1101/619759
  • Henn, F.A., & Hamberger, A. (1971). Glial cell function: Uptake of transmitter substances. Proceedings of the National Academy of Sciences, 68, 2686–2690. doi:10.1073/pnas.68.11.2686
  • Huoviala, P., Dolan, M.-J., Love, F.M., Frechter, S., Roberts, R.J.V., Mitrevica, Z., … Jefferis, G.S.X.E. (2018). Neural circuit basis of aversive odour processing in Drosophila from sensory input to descending output. BioRxiv, 394403. doi:10.1101/394403
  • Hussain, A., Üçpunar, H.K., Zhang, M., Loschek, L.F., & Grunwald Kadow, I.C. (2016). Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biology, 14, e1002455. doi:10.1371/journal.pbio.1002455
  • Jovanic, T., Schneider-Mizell, C.M., Shao, M., Masson, J.-B., Denisov, G., Fetter, R.D., … Zlatic, M. (2016). Competitive disinhibition mediates behavioral choice and sequences in Drosophila. Cell, 167, 858–870.e19. doi:10.1016/j.cell.2016.09.009
  • Kasture, A.S., Bartel, D., Steinkellner, T., Sucic, S., Hummel, T., & Freissmuth, M. (2019). Distinct contribution of axonal and somatodendritic serotonin transporters in Drosophila olfaction. Neuropharmacology, 161, 107564.doi:10.1016/j.neuropharm.2019.03.007
  • Krashes, M.J., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139, 416–427. doi:10.1016/j.cell.2009.08.035
  • Lendvai, B., & Vizi, E.S. (2008). Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiological Reviews, 88, 333–349. doi:10.1152/physrev.00040.2006
  • Lewis, L.P.C., Siju, K.P., Aso, Y., Friedrich, A.B., Bulteel, A.J.B., Rubin, G.M., & Grunwald Kadow, I.C. (2015). A higher brain circuit for immediate integration of conflicting sensory information in Drosophila. Current Biology: CB, 25, 2203–2214. doi:10.1016/j.cub.2015.07.015
  • Li, P.H., Lindsey, L.F., Januszewski, M., Zheng, Z., Bates, A.S., Taisz, I., … Jain, V. (2019). Automated reconstruction of a serial-section EM Drosophila brain with flood-filling networks and local realignment. BioRxiv, 605634. doi:10.1101/605634
  • Lin, S., Owald, D., Chandra, V., Talbot, C., Huetteroth, W., & Waddell, S. (2014). Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience, 17, 1536–1542. doi:10.1038/nn.3827
  • Lo, C.-C., & Chiang, A.-S. (2016). Toward whole-body connectomics. Journal of Neuroscience, 36, 11375–11383. doi:10.1523/JNEUROSCI.2930-16.2016
  • Marder, E. (2012). Neuromodulation of neuronal circuits: Back to the future. Neuron, 76, 1–11. doi:10.1016/j.neuron.2012.09.010
  • Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., … Looger, L.L. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods, 10, 162–170. doi:10.1038/nmeth.2333
  • Marvin, J.S., Shimoda, Y., Magloire, V., Leite, M., Kawashima, T., Jensen, T.P., … Looger, L.L. (2019). A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nature Methods, 16, 763–770. doi:10.1038/s41592-019-0471-2
  • Michael, D.J., Cai, H., Xiong, W., Ouyang, J., & Chow, R.H. (2006). Mechanisms of peptide hormone secretion. Trends in Endocrinology & Metabolism, 17, 408–415. doi:10.1016/j.tem.2006.10.011
  • Miroschnikow, A., Schlegel, P., Schoofs, A., Hueckesfeld, S., Li, F., Schneider-Mizell, C.M., … Pankratz, M.J. (2018). Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. ELife, 7, pii: e40247. doi:10.7554/eLife.40247
  • Nässel, D.R. (2018). Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila. Frontiers in Cellular Neuroscience, 12, 83. doi:10.3389/fncel.2018.00083
  • Nichols, D.E., & Nichols, C.D. (2008). Serotonin receptors. Chemical Reviews, 108, 1614–1641. doi:10.1021/cr078224o
  • Norris, R.P., Baena, V., & Terasaki, M. (2017). Localization of phosphorylated connexin 43 using serial section immunogold electron microscopy. Journal of Cell Science, 130, 1333–1340. doi:10.1242/jcs.198408
  • Ohyama, T., Schneider-Mizell, C.M., Fetter, R.D., Aleman, J.V., Franconville, R., Rivera-Alba, M., … Zlatic, M. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 520, 633–639. doi:10.1038/nature14297
  • Perisse, E., Owald, D., Barnstedt, O., Talbot, C.B., Huetteroth, W., & Waddell, S. (2016). Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron, 90, 1086–1099. doi:10.1016/j.neuron.2016.04.034
  • Python, F., & Stocker, R.F. (2002). Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. The Journal of Comparative Neurology, 445, 374–387. doi:10.1002/cne.10188
  • Saudou, F., Boschert, U., Amlaiky, N., Plassat, J.L., & Hen, R. (1992). A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. The EMBO Journal, 11, 7–17. doi:10.1002/j.1460-2075.1992.tb05021.x
  • Schlegel, P., Texada, M.J., Miroschnikow, A., Schoofs, A., Hückesfeld, S., Peters, M., … Pankratz, M.J. (2016). Synaptic transmission parallels neuromodulation in a central food-intake circuit. ELife, 5, pii: e16799. doi:10.7554/eLife.16799
  • Schlichting, M., Diaz, M., Xin, J., & Rosbash, M. (2019). Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. BioRxiv, 639146. doi:10.1101/639146
  • Shahidi, R., Williams, E.A., Conzelmann, M., Asadulina, A., Verasztó, C., Jasek, S., … Jékely, G. (2015). A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. ELife, 4, pii: e11147. doi:10.7554/eLife.11147
  • Sizemore, T.R., & Dacks, A.M. (2016). Serotonergic modulation differentially targets distinct network elements within the antennal lobe of Drosophila melanogaster. Scientific Reports, 6, 37119. doi:10.1038/srep37119
  • Strother, J.A., Wu, S.-T., Rogers, E.M., Eliason, J.L.M., Wong, A.M., Nern, A., & Reiser, M.B. (2018). Behavioral state modulates the ON visual motion pathway of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 115(1), E102–E111. doi:10.1073/pnas.1703090115
  • Stroud, J.P., Porter, M.A., Hennequin, G., & Vogels, T.P. (2018). Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience, 21, 1774–1783. doi:10.1038/s41593-018-0276-0
  • Suver, M.P., Mamiya, A., & Dickinson, M.H. (2012). Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Current Biology, 22, 2294–2302. doi:10.1016/j.cub.2012.10.034
  • Wasserman, S.M., Aptekar, J.W., Lu, P., Nguyen, J., Wang, A.L., Keles, M.F., … Frye, M.A. (2015). Olfactory neuromodulation of motion vision circuitry in Drosophila. Current Biology: CB, 25, 467–472. doi:10.1016/j.cub.2014.12.012
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 314, 1–340. doi:10.1098/rstb.1986.0056
  • Yuan, Q., Joiner, W.J., & Sehgal, A. (2006). A sleep-promoting role for the Drosophila serotonin receptor 1A. Current Biology, 16, 1051–1062. doi:10.1016/j.cub.2006.04.032
  • Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., … Bock, D.D. (2018). A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 174, 730–743.e22. doi:10.1016/j.cell.2018.06.019
  • Zwart, M.F., Pulver, S.R., Truman, J.W., Fushiki, A., Fetter, R.D., Cardona, A., & Landgraf, M. (2016). Selective inhibition mediates the sequential recruitment of motor pools. Neuron, 91, 615–628. doi:10.1016/j.neuron.2016.06.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.