344
Views
1
CrossRef citations to date
0
Altmetric
Original Research Articles

Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae

, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 123-132 | Received 03 Aug 2019, Accepted 08 Jan 2020, Published online: 24 Jan 2020

References

  • Ahrens, M.B., & Engert, F. (2015). Large-scale imaging in small brains. Current Opinion in Neurobiology, 32, 78–86. doi:10.1016/j.conb.2015.01.007
  • Apostolopoulou, A.A., Hersperger, F., Mazija, L., Widmann, A., Wust, A., & Thum, A.S. (2014). Composition of agarose substrate affects behavioral output of Drosophila larvae. Frontiers in Behavioral Neuroscience, 8, 11. doi:10.3389/fnbeh.2014.00011
  • Apostolopoulou, A.A., Widmann, A., Rohwedder, A., Pfitzenmaier, J.E., & Thum, A.S. (2013). Appetitive associative olfactory learning in Drosophila larvae. Journal of Visualized Experiments, e4334. doi:10.3791/4334
  • Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R.F., & Pankratz, M.J. (2007). Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. The Journal of Comparative Neurology, 502, 848–856. doi:10.1002/cne.21342
  • Ben-Shahar, Y., & Robinson, G.E. (2001). Satiation differentially affects performance in a learning assay by nurse and forager honey bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187, 891–899. doi:10.1007/s00359-001-0260-z
  • Berck, M.E., Khandelwal, A., Claus, L., Hernandez-Nunez, L., Si, G., Tabone, C.J., … Cardona, A. (2016). The wiring diagram of a glomerular olfactory system. elife, 5, e14859. doi:10.7554/eLife.14859
  • Beyeler, A., Eckhardt, C.A., & Tye, K.M. (2014). Deciphering memory function with optogenetics. Progress in Molecular Biology and Translational Science, 122, 341–390. doi:10.1016/B978-0-12-420170-5.00012-X
  • Das, G., Lin, S., & Waddell, S. (2016). Remembering components of food in Drosophila. Frontiers in Integrative Neuroscience, 10, 4. doi:10.3389/fnint.2016.00004
  • Davis, R.L. (2011). Traces of Drosophila memory. Neuron, 70, 8–19. doi:10.1016/j.neuron.2011.03.012
  • Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., … Rao, Y. (2019). Chemoconnectomics: mapping chemical transmission in Drosophila. Neuron, 101, 876–893.e4. doi:10.1016/j.neuron.2019.01.045
  • Diegelmann, S., Klagges, B., Michels, B., Schleyer, M., & Gerber, B. (2013). Maggot learning and Synapsin function. The Journal of Experimental Biology, 216, 939–951. doi:10.1242/jeb.076208
  • Dudai, Y., Jan, Y.N., Byers, D., Quinn, W.G., & Benzer, S. (1976). Dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the United States of America, 73, 1684–1688. doi:10.1073/pnas.73.5.1684
  • Dumstrei, K., Wang, F., Nassif, C., & Hartenstein, V. (2003). Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin. The Journal of Comparative Neurology, 455, 451–462. doi:10.1002/cne.10484
  • Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C.M., … Cardona, A. (2017). The complete connectome of a learning and memory centre in an insect brain. Nature, 548, 175–182. doi:10.1038/nature23455
  • Eschment, M., Franz, H.R., Güllü, N., Hölscher, L.G., & Widmann, A. (2019). Insulin signaling gates long-term memory formation in Drosophila larvae. bioRxiv, 842997. doi:10.1101/842997
  • Folkers, E., Waddell, S., & Quinn, W.G. (2006). The Drosophila radish gene encodes a protein required for anesthesia-resistant memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 17496–17500. doi:10.1073/pnas.0608377103
  • Friedrich, A., Thomas, U., & Muller, U. (2004). Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. Journal of Neuroscience, 24, 4460–4468. doi:10.1523/JNEUROSCI.0669-04.2004
  • Gerber, B., & Hendel, T. (2006). Outcome expectations drive learned behaviour in larval Drosophila. Proceedings of the Royal Society B: Biological Sciences, 273, 2965–2968. doi:10.1098/rspb.2006.3673
  • Gerber, B., & Stocker, R.F. (2007). The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chemical Senses, 32, 65–89. doi:10.1093/chemse/bjl030
  • Gomez-Marin, A., & Louis, M. (2012). Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Curr Opin Neurobiol, 22, 208–215. doi:10.1016/j.conb.2011.11.008
  • Gruber, F., Knapek, S., Fujita, M., Matsuo, K., Bräcker, L., Shinzato, N., … Tanimoto, H. (2013). Suppression of conditioned odor approach by feeding is independent of taste and nutritional value in Drosophila. Current Biology, 23, 507–514. doi:10.1016/j.cub.2013.02.010
  • Handke, B., Poernbacher, I., Goetze, S., Ahrens, C.H., Omasits, U., Marty, F., … Lehner, C.F. (2013). The hemolymph proteome of fed and starved Drosophila larvae. PLoS One, 8, e67208. doi:10.1371/journal.pone.0067208
  • Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4, 266–275. doi:10.1038/nrn1074
  • Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology, 25, 751–758. doi:10.1016/j.cub.2015.01.036
  • Kandel, E.R., Dudai, Y., & Mayford, M.R. (2014). The molecular and systems biology of memory. Cell, 157, 163–186. doi:10.1016/j.cell.2014.03.001
  • Klein, M., Afonso, B., Vonner, A.J., Hernandez-Nunez, L., Berck, M., Tabone, C.J., … Samuel, A.D.T. (2015). Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proceedings of the National Academy of Sciences of the United States of America, 112, E220–229. doi:10.1073/pnas.1416212112
  • Krashes, M.J., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139, 416–427. doi:10.1016/j.cell.2009.08.035
  • Krashes, M.J., & Waddell, S. (2008). Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. The Journal of Neuroscience, 28, 3103–3113. doi:10.1523/JNEUROSCI.5333-07.2008
  • Kreher, S.A., Mathew, D., Kim, J., & Carlson, J.R. (2008). Translation of sensory input into behavioral output via an olfactory system. Neuron, 59, 110–124. doi:10.1016/j.neuron.2008.06.010
  • Kudow, N., Miura, D., Schleyer, M., Toshima, N., Gerber, B., & Tanimura, T. (2017). Preference for and learning of amino acids in larval Drosophila. Biology Open, 6, 365–369. doi:10.1242/bio.020412
  • Li, H.H., Kroll, J.R., Lennox, S.M., Ogundeyi, O., Jeter, J., Depasquale, G., & Truman, J.W. (2014). A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Reports, 8, 897–908. doi:10.1016/j.celrep.2014.06.065
  • Lin, S., Senapati, B., & Tsao, C.H. (2019). Neural basis of hunger-driven behaviour in Drosophila. Open Biology, 9, 180259. doi:10.1098/rsob.180259
  • Lyutova, R., Selcho, M., Pfeuffer, M., Segebarth, D., Habenstein, J., Rohwedder, A., … Pauls, D. (2019). Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nature Communications, 10, 3097. doi:10.1038/s41467-019-11092-1
  • Matsumoto, Y., & Mizunami, M. (2002). Temporal determinants of long-term retention of olfactory memory in the cricket Gryllus bimaculatus. The Journal of Experimental Biology, 205, 1429–1437. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11976354
  • Menzel, R. (2014). The insect mushroom body, an experience-dependent recoding device. Journal of Physiology Paris, 108, 84–95. doi:10.1016/j.jphysparis.2014.07.004
  • Miroschnikow, A., Schlegel, P., Schoofs, A., Hueckesfeld, S., Li, F., Schneider-Mizell, C.M., … Pankratz, M.J. (2018). Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. elife, 7, e40247. doi:10.7554/eLife.40247
  • Narasimha, S., Nagornov, K.O., Menin, L., Mucciolo, A., Rohwedder, A., Humbel, B.M., … Vijendravarma, R.K. (2019). Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism. PLoS Biology, 17, e2006012. doi:10.1371/journal.pbio.2006012
  • Nassel, D.R. (2018). Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila. Frontiers in Cellular Neuroscience, 12, 83. doi:10.3389/fncel.2018.00083
  • Nassel, D.R., Pauls, D., & Huetteroth, W. (2019). Neuropeptides in modulation of Drosophila behavior: how to get a grip on their pleiotropic actions. Current Opinion in Insect Science, 36, 1–8. doi:10.1016/j.cois.2019.03.002
  • Neuser, K., Husse, J., Stock, P., & Gerber, B. (2005). Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type and memory span. Animal Behaviour, 69, 891–898. doi:10.1016/j.anbehav.2004.06.013
  • Niewalda, T., Singhal, N., Fiala, A., Saumweber, T., Wegener, S., & Gerber, B. (2008). Salt processing in larval Drosophila: choice, feeding, and learning shift from appetitive to aversive in a concentration-dependent way. Chemical Senses, 33, 685–692. doi:10.1093/chemse/bjn037
  • Ohyama, T., Schneider-Mizell, C.M., Fetter, R.D., Aleman, J.V., Franconville, R., Rivera-Alba, M., … Zlatic, M. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 520, 633–639. doi:10.1038/nature14297
  • Ormerod, K.G., LePine, O.K., Abbineni, P.S., Bridgeman, J.M., Coorssen, J.R., Mercier, A.J., & Tattersall, G.J. (2017). Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition. Fly (Austin), 11, 153–170. doi:10.1080/19336934.2017.1304331
  • Owald, D., Lin, S., & Waddell, S. (2015). Light, heat, action: neural control of fruit fly behaviour. Philosophical Transactions of the Royal Society B, 370, 20140211. doi:10.1098/rstb.2014.0211
  • Pauls, D., Selcho, M., Gendre, N., Stocker, R.F., & Thum, A.S. (2010). Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. The Journal of Neuroscience, 30, 10655–10666. doi:10.1523/JNEUROSCI.1281-10.2010
  • Pauls, D., von Essen, A., Lyutova, R., van Giesen, L., Rosner, R., Wegener, C., & Sprecher, S.G. (2015). Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae. Genetics, 199, 25–37. doi:10.1534/genetics.114.172023
  • Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755. doi:10.1534/genetics.110.119917
  • Rohwedder, A., Pfitzenmaier, J.E., Ramsperger, N., Apostolopoulou, A.A., Widmann, A., & Thum, A.S. (2012). Nutritional value-dependent and nutritional value-independent effects on Drosophila melanogaster larval behavior. Chemical Senses, 37, 711–721. doi:10.1093/chemse/bjs055
  • Rohwedder, A., Selcho, M., Chassot, B., & Thum, A.S. (2015). Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae. The Journal of Comparative Neurology, 523, 2637–2664. doi:10.1002/cne.23873
  • Saumweber, T., Rohwedder, A., Schleyer, M., Eichler, K., Chen, Y-c., Aso, Y., … Gerber, B. (2018). Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nature Communications n, 9, 1104. doi:10.1038/s41467-018-03130-1
  • Schipanski, A., Yarali, A., Niewalda, T., & Gerber, B. (2008). Behavioral analyses of sugar processing in choice, feeding, and learning in larval Drosophila. Chemical Senses, 33, 563–573. doi:10.1093/chemse/bjn024
  • Selcho, M., Pauls, D., Han, K.A., Stocker, R.F., & Thum, A.S. (2009). The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One, 4, e5897. doi:10.1371/journal.pone.0005897
  • Shohat-Ophir, G., Kaun, K.R., Azanchi, R., Mohammed, H., & Heberlein, U. (2012). Sexual deprivation increases ethanol intake in Drosophila. Science, 335, 1351–1355. doi:10.1126/science.1215932
  • Tempel, B.L., Bonini, N., Dawson, D.R., & Quinn, W.G. (1983). Reward learning in normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 80, 1482–1486. doi:10.1073/pnas.80.5.1482
  • Thum, A.S., & Gerber, B. (2019). Connectomics and function of a memory network: the mushroom body of larval Drosophila. Current Opinion in Neurobiology, 54, 146–154. doi:10.1016/j.conb.2018.10.007
  • Thum, A.S., Jenett, A., Ito, K., Heisenberg, M., & Tanimoto, H. (2007). Multiple memory traces for olfactory reward learning in Drosophila. The Journal of Neuroscience, 27, 11132–11138. doi:10.1523/JNEUROSCI.2712-07.2007
  • Vijendravarma, R.K., Narasimha, S., & Kawecki, T.J. (2010). Effects of parental larval diet on egg size and offspring traits in Drosophila. Biology Letters, 6, 238–241. doi:10.1098/rsbl.2009.0754
  • Vijendravarma, R.K., Narasimha, S., & Kawecki, T.J. (2013). Predatory cannibalism in Drosophila melanogaster larvae. Nature Communications n, 4, 1789. doi:10.1038/ncomms2744
  • Weiglein, A., Gerstner, F., Mancini, N., Schleyer, M., & Gerber, B. (2019). One-trial learning in larval Drosophila. Learning & Memory, 26, 109–120. doi:10.1101/lm.049106.118
  • Widmann, A., Artinger, M., Biesinger, L., Boepple, K., Peters, C., Schlechter, J., … Thum, A.S. (2016). Genetic dissection of aversive associative olfactory learning and memory in Drosophila larvae. PLoS Genetics, 12, e1006378. doi:10.1371/journal.pgen.1006378
  • Widmann, A., Eichler, K., Selcho, M., Thum, A.S., & Pauls, D. (2018). Odor-taste learning in Drosophila larvae. Journal of Insect Physiology, 106, 47–54. doi:10.1016/j.jinsphys.2017.08.004
  • Wu, Q., Zhang, Y., Xu, J., & Shen, P. (2005). Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 102, 13289–13294. doi:10.1073/pnas.0501914102
  • Wu, Q., Zhao, Z., & Shen, P. (2005). Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nature Neuroscience, 8, 1350–1355. doi:10.1038/nn1540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.