350
Views
2
CrossRef citations to date
0
Altmetric
Original Research Articles

Differential localization of voltage-gated potassium channels during Drosophila metamorphosis

, , , &
Pages 133-150 | Received 05 Sep 2019, Accepted 07 Jan 2020, Published online: 30 Jan 2020

References

  • Allen, M.J., Drummond, J.A., & Moffat, K.G. (1998). Development of the giant fiber neuron of Drosophila melanogaster. Journal of Comparative Neurology, 397, 519–531. doi:10.1002/(SICI)1096-9861(19980810)397:4<519::AID-CNE5>3.0.CO;2-4
  • Allen, M.J., & Murphey, R.K. (2007). The chemical component of the mixed GF-TTMn synapse in Drosophila melanogaster uses acetylcholine as its neurotransmitter. European Journal of Neuroscience, 26, 439–445. doi:10.1111/j.1460-9568.2007.05686.x
  • Atwood, H.L., & Karunanithi, S. (2002). Diversification of synaptic strength: Presynaptic elements. Nature Reviews Neuroscience 3, 497–516. doi:10.1038/nrn876
  • Bainbridge, S.P., & Bownes, M. (1981). Staging the metamorphosis of Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 66, 57–80.
  • Baro, D.J., Ayali, A., French, L., Scholz, N.L., Labenia, J., Lanning, C.C., … Harris-Warrick, R.M. (2000). Molecular underpinnings of motor pattern generation: Differential targeting of shal and shaker in the pyloric motor system. Journal of Neuroscience, 20, 6619–6630. doi:10.1523/JNEUROSCI.20-17-06619.2000
  • Blagburn, J.M., Alexopoulos, H., Davies, J.A., & Bacon, J.P. (1999). Null mutation in shaking-B eliminates electrical, but not chemical, synapses in the Drosophila giant fiber system: A structural study. Journal of Comparative Neurology, 404, 449–458. doi:10.1002/(SICI)1096-9861(19990222)404:4<449::AID-CNE3>3.0.CO;2-D
  • Boerner, J., & Duch, C. (2010). Average shape standard atlas for the adult Drosophila ventral nerve cord. Journal of Comparative Neurology, 518, 2437–2455. doi:10.1002/cne.22346
  • Burkhalter, A., Gonchar, Y., Mellor, R.L., & Nerbonne, J.M. (2006). Differential expression of I(A) channel subunits Kv4.2 and Kv4 3 in mouse visual cortical neurons and synapses. Journal of Neuroscience, 26, 12274–12282. doi:10.1523/JNEUROSCI.2599-06.2006
  • Catsch, A. (1944). Eine erbliche Störung des Bewegungsmechanismus von Drosophila melanogaster. Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 82, 64–66. doi:10.1007/BF00308399
  • Choi, J.C., Park, D., & Griffith, L.C. (2004). Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. Journal of Neurophysiology, 91, 2353–2365. doi:10.1152/jn.01115.2003
  • Consoulas, C., Bayline, R.J., Duch, C., & Levine, R.B. (2000). Behavioral transformations during metamorphosis: Remodeling of neural and motor systems. Brain Research Bulletin, 53, 571–583. doi:10.1016/S0361-9230(00)00391-9
  • Consoulas, C., Restifo, L.L., & Levine, R.B. (2002). Dendritic remodeling and growth of motoneurons during metamorphosis of Drosophila melanogaster. Journal of Neuroscience, 22, 4906–4917. doi:10.1523/JNEUROSCI.22-12-04906.2002
  • Covarrubias, M., Wei, A.A., & Salkoff, L. (1991). Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron, 7, 763–773. doi:10.1016/0896-6273(91)90279-9
  • Diao, F., Chaufty, J., Waro, G., & Tsunoda, S. (2010). SIDL interacts with the dendritic targeting motif of Shal (K(v)4) K+ channels in Drosophila. Molecular and Cellular Neuroscience, 45, 75–83. doi:10.1016/j.mcn.2010.06.001
  • Duch, C., & Levine, R.B. (2000). Remodeling of membrane properties and dendritic architecture accompanies the postembryonic conversion of a slow into a fast motoneuron. Journal of Neuroscience, 20, 6950–6961. doi:10.1523/JNEUROSCI.20-18-06950.2000
  • Duch, C., & Levine, R.B. (2002). Changes in calcium signaling during postembryonic dendritic growth in Manduca sexta. Journal of Neurophysiology, 87, 1415–1425. doi:10.1152/jn.00524.2001
  • Duch, C., & Mentel, T. (2004). Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta. Journal of Neuroscience, 24, 9826–9837. doi:10.1523/JNEUROSCI.3189-04.2004
  • Duch, C., Vonhoff, F., & Ryglewski, S. (2008). Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. Journal of Neurophysiology, 100, 2525–2536. doi:10.1152/jn.90758.2008
  • French, L.B., Lanning, C.C., Matly, M., & Harris-Warrick, R.M. (2004). Cellular localization of Shab and Shaw potassium channels in the lobster stomatogastric ganglion. Neuroscience, 123, 919–930. doi:10.1016/j.neuroscience.2003.08.036
  • Ganetzky, B., & Wu, C.F. (1982). Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing. Journal of Neurophysiology, 47, 501–514. doi:10.1152/jn.1982.47.3.501
  • Gutman, G.A., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L.A., … Wang, X. (2005). International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacological Reviews, 57, 473–508. doi:10.1124/pr.57.4.10
  • Haugland, F.N., & Wu, C.F. (1990). A voltage-clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila. Journal of Neuroscience, 10, 1357–1371. doi:10.1523/JNEUROSCI.10-04-01357.1990
  • Hille, B. (2001). Ion channels of excitable membranes. Sunderland, MA: Sinauer.
  • Hodge, J.J.L., Choi, J.C., O’Kane, C.J., & Griffith, L.C. (2005). Shaw potassium channel genes in Drosophila. Journal of Neurobiology, 63, 235–254. doi:10.1002/neu.20126
  • Hwang, P.M., Fotuhi, M., Bredt, D.S., Cunningham, A.M., & Snyder, S.H. (1993). Contrasting immunohistochemical localizations in rat brain of two novel potassium channels of the Shab family. Journal of Neuroscience, 13, 1569–1576. doi:10.1523/JNEUROSCI.13-04-01569.1993
  • Isacoff, E.Y., Jan, Y.N., & Jan, L.Y. (1990). Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature, 345, 530–534. doi:10.1038/345530a0
  • Jan, L.Y., & Jan, Y.N. (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annual Review of Neuroscience, 20, 91–123.
  • Kadas, D., Duch, C., & Consoulas, C. (2019). Postnatal increases in axonal conduction velocity of an identified Drosophila interneuron require fast sodium, L-type calcium and shaker potassium channels. eNeuro, 6. doi:10.1523/ENEURO.0181-19.2019
  • Kadas, D., Klein, A., Krick, N., Worrell, J.W., Ryglewski, S., & Duch, C. (2017). Dendritic and axonal L-type calcium channels cooperate to enhance motoneuron firing output during Drosophila larval locomotion. Journal of Neuroscience, 37, 10971–10982. doi:10.1523/JNEUROSCI.1064-17.2017
  • Kadas, D., Ryglewski, S., & Duch, C. (2015). Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion. Journal of Physiology, 593, 4871–4888. doi:10.1113/JP271323
  • Kaplan, W.D., & Trout, W.E. (1969). The behavior of four neurological mutants of Drosophila. Genetics, 61, 399–409.
  • Kim, E.Z., Vienne, J., Rosbash, M., & Griffith, L.C. (2017). Nonreciprocal homeostatic compensation in Drosophila potassium channel mutants. Journal of Neurophysiology, 117, 2125–2136. doi:10.1152/jn.00002.2017
  • Kim, L.A., Furst, J., Gutierrez, D., Butler, M.H., Xu, S., Goldstein, S.A.N., & Grigorieff, N. (2004). Three-dimensional structure of Ito: Kv4.2-KChIP2 ion channels by electron microscopy at 21 Å resolution. Neuron, 41, 513–519. doi:10.1016/S0896-6273(04)00050-9
  • Kuehn, C., & Duch, C. (2013). Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. European Journal of Neuroscience, 37, 860–875. doi:10.1111/ejn.12104
  • Kupper, J. (1998). Functional expression of GFP-tagged Kv1.3 and Kv1.4 channels in HEK 293 cells. European Journal of Neuroscience, 10, 3908–3912. doi:10.1046/j.1460-9568.1998.00441.x
  • Lim, S.T., Antonucci, D.E., Scannevin, R.H., & Trimmer, J.S. (2000). A novel targeting signal for proximal clustering of Kv2.1 potassium channel in hippocampal neurons. Neuron, 25, 385–397. doi:10.1016/S0896-6273(00)80902-2
  • MacKinnon, R. (1991). Determination of the subunit stoichiometry of a voltage activated potassium channel. Nature, 350, 232–235. doi:10.1038/350232a0
  • Maletic-Savatic, M., Lenn, N.J., & Trimmer, J.S. (1995). Differential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro. Journal of Neuroscience, 15, 3840–3851. doi:10.1523/JNEUROSCI.15-05-03840.1995
  • Misonou, H., Mohapatra, D.P., Park, E.W., Leung, V., Zhen, D., Misonou, K., … Trimmer, J.S. (2004). Bi-directional activity dependent regulation of neuronal ion channel phosphorylation. Nature Neuroscience, 7, 711–718. doi:10.1038/nn1260
  • Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N., & Jan, L.Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237, 749–753. doi:10.1126/science.2441470
  • Peng, I.F., & Wu, C.F. (2007). Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila. Journal of Neurophysiology, 97, 780–794. doi:10.1152/jn.01012.2006
  • Phelan, P., Nakagawa, M., Wilkin, M.B., Moffat, K.G., O’Kane, C.J., Davies, J.A., & Bacon, J.P. (1996). Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. Journal of Neuroscience, 16, 1101–1113. doi:10.1523/JNEUROSCI.16-03-01101.1996
  • Ping, Y., & Tsunoda, S. (2011). Inactivity-induced increase in nAChRs upregulates Shal K+ channels to stabilize synaptic potentials. Nature Neuroscience, 15, 90–97. doi:10.1038/nn.2969
  • Ping, Y., Waro, G., Licursi, A., Smith, S., Vo-Ba, D.A., & Tsunoda, S. (2011). Shal/K(v)4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One, 6, e16043. doi:10.1371/journal.pone.0016043
  • Pongs, O., Leicher, T., Berger, M., Roeper, J., Bahring, R., Wray, D., … Storm, J.F. (1999). Functional and molecular aspects of voltage-gated K channel beta subunits. Annals of the New York Academy of Sciences, 868, 344–355. doi:10.1111/j.1749-6632.1999.tb11296.x
  • Rogero, O., Hämmerle, B., & Tejedor, F.J. (1997). Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system. Journal of Neuroscience, 17, 5108–5118. doi:10.1523/JNEUROSCI.17-13-05108.1997
  • Rudy, B., Chow, A., Lau, D., Amarillo, Y., Ozaita, A., Saganich, M., … Vega-Saenz de Miera, E. (1999). Contributions of Kv3 channels to neuronal excitability. Annals of the New York Academy of Sciences, 868, 304–313. doi:10.1111/j.1749-6632.1999.tb11295.x
  • Ruppersberg, J.P., Schroter, K.H., Sakmann, B., Stocker, M., Sewing, S., & Pongs, O. (1990). Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature, 345, 535–537. doi:10.1038/345535a0
  • Ryglewski, S., & Duch, C. (2009). Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. Journal of Neurophysiology, 102, 3673–3688. doi:10.1152/jn.00693.2009
  • Ryglewski, S., & Duch, C. (2012). Preparation of Drosophila central neurons for in situ patch clamping. Journal of Visualized Experiments, (68), 4264. doi:10.3791/4264
  • Ryglewski, S., Kadas, D., Hutchinson, K., Schuetzler, N., Vonhoff, F., & Duch, C. (2014). Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proceedings of the National Academy of Sciences of the United Stated of America, 111, 18049–18054. doi:10.1073/pnas.1416247111
  • Ryglewski, S., Kilo, L., & Duch, C. (2014). Sequential acquisition of cacophony calcium currents, sodium channels and voltage-dependent potassium currents affects spike shape and dendrite growth during postembryonic maturation of an identified Drosophila motoneuron. European Journal of Neuroscience, 39, 1572–1585. doi:10.1111/ejn.12517
  • Ryglewski, S., Vonhoff, F., Scheckel, K., & Duch, C. (2017). Intra-neuronal competition for synaptic partners conserves the amount of dendritic building material. Neuron, 93, 632–645.e6. doi:10.1016/j.neuron.2016.12.043
  • Salkoff, L., Baker, K., Butler, A., Covarrubias, M., Pak, M.D., & Wei, A. (1992). An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends in Neurosciences, 15, 161–166. doi:10.1016/0166-2236(92)90165-5
  • Saur, T., Peng, I.F., Jiang, P., Gong, N., Yao, W.D., Xu, T.L., & Wu, C.F. (2016). K+ channel reorganization and homeostatic plasticity during postembryonic development: Biophysical and genetic analyses in acutely dissociated Drosophila central neurons. Journal of Neurogenetics, 30, 259–275. doi:10.1080/01677063.2016.1255212
  • Schaefer, J.E., Worrell, J.W., & Levine, R.B. (2010). Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling. Journal of Neurophysiology, 104, 1257–1266.
  • Schützler, N., Girwert, C., Hügli, I., Mohana, G., Roignant, J.Y., Ryglewski, S., & Duch, C. (2019). Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. Proceedings of the National Academy of Sciences of the United States of America, 116, 3805–3810. doi:10.1073/pnas.1813554116
  • Sheng, M., Tsaur, M.L., Jan, J.N., & Jan, L.Y. (1992). Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron, 9, 271–284. doi:10.1016/0896-6273(92)90166-B
  • Sun, Y.A., & Wyman, R.J. (1997). Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. Journal of Comparative Neurology, 387, 157–166. doi:10.1002/(SICI)1096-9861(19971013)387:1<157::AID-CNE13>3.0.CO;2-R
  • Tanouye, M.A., & Ferrus, A. (1985). Action potentials in normal and Shaker mutant Drosophila. Journal of Neurogenetics, 2, 253–271. doi:10.3109/01677068509102322
  • Tanouye, M.A., Ferrus, A., & Fujita, S.C. (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 78, 6548–6552. doi:10.1073/pnas.78.10.6548
  • Tejedor, F.J., Bokhari, A., Rogero, O., Gorczyca, M., Zhang, J., Kim, E., … Budnik, V. (1997). Essential role for dlg in synaptic clustering of Shaker potassium channels in vivo. Journal of Neuroscience, 17, 152–159. doi:10.1523/JNEUROSCI.17-01-00152.1997
  • Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.N., & Jan, L.Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science, 237, 770–775. doi:10.1126/science.2441471
  • Tissot, M., & Stocker, R.F. (2000). Metamorphosis in Drosophila and other insects: The fate of neurons throughout the stages. Progress in Neurobiology, 62, 89–111. doi:10.1016/S0301-0082(99)00069-6
  • Trimmer, C.S. (2015). Subcellular localization of K+ channels in mammalian brain neurons: Remarkable precision in the midst of extraordinary complexity. Neuron, 85, 238–256. doi:10.1016/j.neuron.2014.12.042
  • Trimmer, C.S., & Rhodes, K.J. (2004). Localization of voltage gated ion channel in mammalian brain. Annual Review of Physiology, 66, 447–519.
  • Trimmer, J.S. (1998). Regulation of ion channel expression by cytoplasmic subunits. Current Opinion in Neurobiology, 8, 370–374. doi:10.1016/S0959-4388(98)80063-9
  • Ueda, A., & Wu, C.F. (2006). Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. Journal of Neuroscience, 26, 6238–6248. doi:10.1523/JNEUROSCI.0862-06.2006
  • Vacher, H., Mohapartra, D.P., & Trimmer, J.S. (2008). Localization and targeting of voltage dependent ion channels mammalian central neurons. Physiological Research, 88, 1407–1447. doi:10.1152/physrev.00002.2008
  • Venken, K.J., Schulze, K.L., Haelterman, N.A., Pan, H., He, Y., Evans-Holm, M., … Bellen, H.J. (2011). MiMIC: A highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 8, 737–743. doi:10.1038/nmeth.1662
  • von Reyn, C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., Yee, A.L., … Card, G.M. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970. doi:10.1038/nn.3741
  • Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., & Salkoff, L. (1990). K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science, 248, 599–603. doi:10.1126/science.2333511
  • Xing, X., & Wu, C.F. (2018). Unraveling synaptic GCaMP signals: Differential excitability and clearance mechanisms underlying distinct Ca2+ dynamics in tonic and phasic excitatory, and aminergic modulatory motor terminals in Drosophila. eNeuro, 5, ENEURO.0362-17.2018. doi:10.1523/ENEURO.0362-17.2018
  • Zito, K., Fetter, R.D., Goodman, C.S., & Isacoff, E.Y. (1997). Synaptic clustering of fasciclin II and Shaker: Essential targeting sequences of role of Dlg. Neuron, 19, 1007–1016. doi:10.1016/S0896-6273(00)80393-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.