319
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

Dopaminergic neurons can influence heat-box place learning in Drosophila

, , , ORCID Icon &
Pages 115-122 | Received 21 Oct 2019, Accepted 10 Jan 2020, Published online: 30 Jan 2020

References

  • Agarwal, M., Giannoni Guzmán, M., Morales-Matos, C., Del Valle Díaz, R.A., Abramson, C.I., & Giray, T. (2011). Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE, 6, e25371. doi:10.1371/journal.pone.0025371
  • Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guérin, G., … Rubin, G.M. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife, 3, e04580. doi:10.7554/eLife.04580
  • Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., … Waddell, S. (2012). Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 492, 433–437. doi:10.1038/nature11614
  • Claridge-Chang, A., Roorda, R.D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenböck, G. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415. doi:10.1016/j.cell.2009.08.034
  • Cognigni, P., Felsenberg, J., & Waddell, S. (2018). Do the right thing: Neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology, 49, 51–58. doi:10.1016/j.conb.2017.12.002
  • Cohn, R., Morantte, I., & Ruta, V. (2015). Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell, 163, 1742–1755. doi:10.1016/j.cell.2015.11.019
  • Das, G., Klappenbach, M., Vrontou, E., Perisse, E., Clark, C.M., Burke, C.J., & Waddell, S. (2014). Drosophila learn opposing components of a compound food stimulus. Current Biology, 24, 1723–1730. doi:10.1016/j.cub.2014.05.078
  • Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S., & Waddell, S. (2017). Re-evaluation of learned information in Drosophila. Nature, 544, 240–244. doi:10.1038/nature21716
  • Felsenberg, J., Jacob, P.F., Walker, T., Barnstedt, O., Edmondson-Stait, A.J., Pleijzier, M.W., … Waddell, S. (2018). Integration of parallel opposing memories underlies memory extinction. Cell, 175, 709–722.e15. doi:10.1016/j.cell.2018.08.021
  • Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., & Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. Journal of Neurobiology, 54, 618–627. doi:10.1002/neu.10185
  • Gioia, A., & Zars, T. (2009). Thermotolerance and place memory in adult Drosophila are independent of natural variation at the foraging locus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, 777–782. doi:10.1007/s00359-009-0455-2
  • Heisenberg, M. (1998). What do the mushroom bodies do for the insect brain? An introduction. Learning & Memory, 5, 1–10.
  • Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., Waddell, S., & Waddell Correspondence, S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology, 25, 751–758. doi:10.1016/j.cub.2015.01.036
  • Keleman, K., Vrontou, E., Krüttner, S., Yu, J.Y., Kurtovic-Kozaric, A., & Dickson, B.J. (2012). Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, 489, 145–149. doi:10.1038/nature11345
  • Klappenbach, M., Maldonado, H., Locatelli, F., & Kaczer, L. (2012). Opposite actions of dopamine on aversive and appetitive memories in the crab. Learning & Memory, 19, 73–83. doi:10.1101/lm.024430.111
  • Krashes, M. J., Dasgupta, S., Vreede, A., White, B., Douglas Armstrong, J., & Waddell, S. (2009). A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila. Cell, 139, 416–427.
  • Liu, C., Plaçais, P.-Y., Yamagata, N., Pfeiffer, B.D., Aso, Y., Friedrich, A.B., … Tanimoto, H. (2012). A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 488, 512–516. doi:10.1038/nature11304
  • Mao, Z., & Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3, 5. doi:10.3389/neuro.04.005.2009
  • Masek, P., & Keene, A.C. (2016). Gustatory processing and taste memory in Drosophila. Journal of Neurogenetics, 30, 112–121. doi:10.1080/01677063.2016.1185104
  • Masek, P., Worden, K., Aso, Y., Rubin, G.M., & Keene, A.C. (2015). A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Current Biology, 25, 1535–1541. doi:10.1016/j.cub.2015.04.027
  • Mishra, A., Salari, A., Berigan, B.R., Miguel, K.C., Amirshenava, M., Robinson, A., … Zars, T. (2018). The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Scientific Reports, 8, 901. doi:10.1038/s41598-017-19065-4
  • Nestler, E.J., & Lüscher, C. (2019). The molecular basis of drug addiction: Linking epigenetic to synaptic and circuit mechanisms. In Neuron, 102, 48–59. doi:10.1016/j.neuron.2019.01.016
  • Ni, L., Bronk, P., Chang, E.C., Lowell, A.M., Flam, J.O., Panzano, V.C., … Garrity, P.A. (2013). A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature, 500, 580–584. doi:10.1038/nature12390
  • Ostrowski, D., Salari, A., Zars, M., & Zars, T. (2018). A biphasic locomotor response to acute unsignaled high temperature exposure in Drosophila. PLoS ONE, 13, e0198702. doi:10.1371/journal.pone.0198702
  • Pignatelli, M., & Bonci, A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. In Neuron, 86, 1145–1157. doi:10.1016/j.neuron.2015.04.015
  • Putz, G., & Heisenberg, M. (2002). Memories in Drosophila heat-box learning. Learning and Memory, 9, 349–359. doi:10.1101/lm.50402
  • Rohwedder, A., Wenz, N.L., Stehle, B., Huser, A., Yamagata, N., Zlatic, M., … Thum, A.S. (2016). Four individually identified paired dopamine neurons signal reward in larval Drosophila. Current Biology, 26, 661–669. doi:10.1016/j.cub.2016.01.012
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Völler, T., Erbguth, K., … Fiala, A. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol, 16, 1741–1747. doi:10.1016/j.cub.2006.07.023
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. The Journal of Neuroscience, 23, 10495–10502. doi:10.1523/JNEUROSCI.23-33-10495.2003
  • Sitaraman, D., Zars, M., Laferriere, H., Chen, Y.-C., Sable-Smith, A., Kitamoto, T., … Zars, T. (2008). Serotonin is necessary for place memory in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 5579–5584. doi:10.1073/pnas.0710168105
  • Stern, U., Srivastava, H., Chen, H.-L., Mohammad, F., Claridge-Chang, A., & Yang, C.-H. (2019). Learning a spatial task by trial and error in Drosophila. Current Biology, 29, 2517–2525. doi:10.1016/j.cub.2019.06.045
  • Vogt, K., Schnaitmann, C., Dylla, K.V., Knapek, S., Aso, Y., Rubin, G.M., & Tanimoto, H. (2014). Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. Elife, 3, e02395. doi:10.7554/eLife.02395
  • Walton, M.E., & Bouret, S. (2019). What is the relationship between dopamine and effort? Trends in Neurosciences, 42, 79–91. doi:10.1016/j.tins.2018.10.001
  • Wustmann, G., & Heisenberg, M. (1997). Behavioral manipulation of retrieval in a spatial memory task for Drosophila melanogaster. Learning & Memory, 4, 328–336. doi:10.1101/lm.4.4.328
  • Zars, M., & Zars, T. (2006). High and low temperatures have unequal reinforcing properties in Drosophila spatial learning. Journal of Comparative Physiology A, 192, 727–735. doi:10.1007/s00359-006-0109-6
  • Zars, T., Wolf, R., Davis, R., & Heisenberg, M. (2000). Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: In search of the engram. Learning & Memory, 7, 18–31. doi:10.1101/lm.7.1.18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.