108
Views
4
CrossRef citations to date
0
Altmetric
Perspectives

Experimental psychology meets behavioral ecology: what laboratory studies of learning polymorphisms mean for learning under natural conditions, and vice versa

&
Pages 178-183 | Received 01 Nov 2019, Accepted 16 Jan 2020, Published online: 06 Feb 2020

References

  • Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 1911. doi:10.1038/s41467-018-04252-2
  • Anreiter, I., & Sokolowski, M.B. (2019). The foraging gene and its behavioral effects: Pleiotropy and plasticity. Annual Review of Genetics, 53, 373–392. doi:10.1146/annurev-genet-112618-043536
  • Baggett, V., Mishra, A., Kehrer, A.L., Robinson, A.O., Shaw, P., & Zars, T. (2018). Place learning overrides innate behaviors in. Learning and Memory, 25, 122–128. doi:10.1101/lm.046136.117
  • Benatar, S.T., Cobey, S., & Smith, B.H. (1995). Selection on a haploid geneotype for discrimination learning performance: Correlation between drone honey bees (Apis mellifera) and their worker progeny (Hymenoptera: Apidae). Journal of Insect Behavior, 8, 637–652. doi:10.1007/BF01997235
  • Bhagavan, S., Benatar, S., Cobey, S., & Smith, B. (1994). Effect of genotype but not of age or caste on olfactory learning performance in the honey bee, Apis mellifera. Animal Behaviour, 48, 1357–1369. doi:10.1006/anbe.1994.1372
  • Bitterman, M.E., Menzel, R., Fietz, A., & Schafer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, 97, 107–119. doi:10.1037/0735-7036.97.2.107
  • Brandes, C. (1991). Genetic differences in learning behavior in honeybees (Apis mellifera capensis). Behavior Genetics, 21, 271–294. doi:10.1007/BF01065820
  • Brandes, C., Frisch, B., & Menzel, R. (1988). Time course of memory formation differs in honey bee lines selected for good and poor learning. Animal Behaviour, 36, 981–985. doi:10.1016/S0003-3472(88)80056-3
  • Chandra, S.B., Hosler, J.S., & Smith, B.H. (2000). Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). Journal of Comparative Psychology, 114, 86–97. doi:10.1037/0735-7036.114.1.86
  • Chandra, S.B., Hunt, G.J., Cobey, S., & Smith, B.H. (2001). Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera). Behavior Genetics, 31, 275–285. doi:10.1023/A:1012227308783
  • Chandra, S.B., Wright, G.A., & Smith, B.H. (2010). Latent inhibition in the honey bee, Apis mellifera: Is it a unitary phenomenon?. Animal Cognition, 13, 805–815. doi:10.1007/s10071-010-0329-6
  • Chen, A., Kramer, E.F., Purpura, L., Krill, J.L., Zars, T., & Dawson-Scully, K. (2011). The influence of natural variation at the foraging gene on thermotolerance in adult Drosophila in a narrow temperature range. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 1113–1118. doi:10.1007/s00359-011-0672-3
  • Cobey, S. (2007). Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie, 38, 390–410. doi:10.1051/apido:2007029
  • Cook, C., Lemanski, N., Mosqueiro, T., Gadau, J., Ozturk, C., Pinter-Wollman, N., & Smith, B. (2019). Heritable variation in learning phenotypes drive collective cognition. Bioarxiv. doi:10.1101/761676
  • Davis, R.L. (2005). Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annual Review of Neuroscience, 28, 275–302. doi:10.1146/annurev.neuro.28.061604.135651
  • Deisig, N., Giurfa, M., Lachnit, H., & Sandoz, J.C. (2006). Neural representation of olfactory mixtures in the honeybee antennal lobe. European Journal of Neuroscience, 24, 1161–1174. doi:10.1111/j.1460-9568.2006.04959.x
  • Dudai, Y., Jan, Y.N., Byers, D., Quinn, W.G., & Benzer, S. (1976). Dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Science of the USA, 73, 1684–1688. doi:10.1073/pnas.73.5.1684
  • Farooqui, T., Robinson, K., Vaessin, H., & Smith, B.H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. Journal of Neuroscience, 23, 5370–5380. doi:10.1523/JNEUROSCI.23-12-05370.2003
  • Ferguson, H.J., Cobey, S., & Smith, B.H. (2001). Sensitivity to a change in reward is heritable in the honey bee, Apis mellifera. Animal Behaviour, 61, 527–534. doi:10.1006/anbe.2000.1635
  • Fiala, A., Muller, U., & Menzel, R. (1999). Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. Journal of Neuroscience, 19, 10125–10134. doi:10.1523/JNEUROSCI.19-22-10125.1999
  • Frisch, K. v. (1965). The dance language and orientation of bees. Cambridge, MA: Harvard University Press.
  • Galizia, C.G., Joerges, J., Kuttner, A., Faber, T., & Menzel, R. (1997). A semi-in-vivo preparation for optical recording of the insect brain. Journal of Neuroscience Methods, 76, 61–69. doi:10.1016/S0165-0270(97)00080-0
  • Giurfa, M. (2015). Learning and cognition in insects. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 383–395. doi:10.1002/wcs.1348
  • Gong, Z., Tan, K., & Nieh, J.C. (2018). First demonstration of olfactory learning and long-term memory in honey bee queens. Journal of Experimental Biology, 221, jeb177303. doi:10.1242/jeb.177303
  • Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature, 366, 59–63. doi:10.1038/366059a0
  • Hammer, M., & Menzel, R. (1998). Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learning and Memory, 5, 146–156.
  • Hunt, G.J., & Page, R.E. Jr.(1995). Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics, 139, 1371–1382.
  • Hunt, G.J., Amdam, G.V., Schlipalius, D., Emore, C., Sardesai, N., Williams, C.E., … Chandra, S. (2007). Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften, 94, 247–267. doi:10.1007/s00114-006-0183-1
  • Hunt, G.J., Page, R.E., Jr., Fondrk, M.K., & Dullum, C.J. (1995). Major quantitative trait loci affecting honey bee foraging behavior. Genetics, 141, 1537–1545.
  • Konopka, R.J., & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 68, 2112–2116. doi:10.1073/pnas.68.9.2112
  • Koppik, M., Hoffmeister, T.S., Brunkhorst, S., Kieß, M., & Thiel, A. (2015). Intraspecific variability in associative learning in the parasitic wasp Nasonia vitripennis. Animal Cognition, 18, 593–604. doi:10.1007/s10071-014-0828-y
  • LaFerriere, H., Ostrowski, D., Guarnieri, D.J., & Zars, T. (2011a). The arouser EPS8L3 gene is critical for normal memory in Drosophila. PLOS One, 6, e22867. doi:10.1371/journal.pone.0022867
  • LaFerriere, H., Speichinger, K., Stromhaug, A., & Zars, T. (2011b). The radish gene reveals a memory component with variable temporal properties. PLOS One, 6, e24557. doi:10.1371/journal.pone.0024557
  • Latshaw, J.S., & Smith, B.H. (2005). Heritable variation in learning performance affects foraging preferences in the honey bee (Apis mellifera). Behavioral Ecology and Sociobiology, 58, 200–207. doi:10.1007/s00265-004-0904-4
  • Lau, H.L., Timbers, T.A., Mahmoud, R., & Rankin, C.H. (2013). Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans. Genes, Brain and Behavior, 12, 210–223. doi:10.1111/j.1601-183X.2012.00863.x
  • Liefting, M., Hoedjes, K.M., Le Lann, C., Smid, H.M., & Ellers, J. (2018). Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution, 72, 1449–1459. doi:10.1111/evo.13498
  • Liefting, M., Rohmann, J.L., Le Lann, C., & Ellers, J. (2019). What are the costs of learning? Modest trade-offs and constitutive costs do not set the price of fast associative learning ability in a parasitoid wasp. Animal Cognition, 22, 851–861. doi:10.1007/s10071-019-01281-2
  • Locatelli, F.F., Fernandez, P.C., & Smith, B.H. (2016). Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. Journal of Experimental Biology, 219, 2752–2762. doi:10.1242/jeb.141465
  • Lubow, R. (1989). Latent inhibition and conditioned attention theory. Cambridge: Cambridge University Press.
  • McGuire, S.E., Deshazer, M., & Davis, R.L. (2005). Thirty years of olfactory learning and memory research in Drosophila melanogaster. Progress in Neurobiology, 76, 328–347. doi:10.1016/j.pneurobio.2005.09.003
  • Mendoza, E., Colomb, J., Rybak, J., Pflüger, H.J., Zars, T., Scharff, C., & Brembs, B. (2014). Drosophila FoxP mutants are deficient in operant self-learning. PLOS One, 9, e100648. doi:10.1371/journal.pone.0100648
  • Menegazzi, P., Vanin, S., Yoshii, T., Rieger, D., Hermann, C., Dusik, V., … Costa, R. (2013). Drosophila clock neurons under natural conditions. Journal of Biological Rhythms, 28, 3–14. doi:10.1177/0748730412471303
  • Menzel, R. (1990). Learning, memory, and ‘cognition’ in honeybees. In D.S. Olton and R.P. Kesner (Eds.) Neurobiology of comparative cognition (pp. 237–292). Hillsdale, NJ: Lawrence Erlbaum.
  • Mery, F. (2013). Natural variation in learning and memory. Current Opinion in Neurobiology, 23, 52–56. doi:10.1016/j.conb.2012.09.001
  • Mosqueiro, T., Cook, C., Huerta, R., Gadau, J., Smith, B., & Pinter-Wollman, N. (2017). Task allocation and site fidelity jointly influence foraging regulation in honeybee colonies. Royal Society Open Science, 4, 170344. doi:10.1098/rsos.170344
  • Muth, F., Cooper, T., Bonilla, R., & Leonard, A. (2017). A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9, 78–87. doi:10.1111/2041-210X.12852
  • Noreen, S., Pegoraro, M., Nouroz, F., Tauber, E., & Kyriacou, C.P. (2018). Interspecific studies of circadian genes period and timeless in Drosophila. Gene, 648, 106–114. doi:10.1016/j.gene.2018.01.020
  • Ostrowski, D., Kahsai, L., Kramer, E.F., Knutson, P., & Zars, T. (2015). Place memory retention in Drosophila. Neurobiology of Learning and Memory, 123, 217–224. doi:10.1016/j.nlm.2015.06.015
  • Page, R.E. (2013). The mechanisms of social evolution. Boston, MA: Harvard University Press.
  • Page, R.E., Jr., Erber, J., & Fondrk, M.K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L). Journal of Comparative Physiology A-Sensory Neural & Behavioral Physiology, 182, 489–500. doi:10.1007/s003590050196
  • Page, R.E., Rueppell, O., & Amdam, G.V. (2012). Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annual Reviews of Genetics, 46, 97–119. doi:10.1146/annurev-genet-110711-155610
  • Riveros, A.J., & Gronenberg, W. (2009). Learning from learning and memory in bumblebees. Communicative and Integrative Biology, 2, 437–440. doi:10.4161/cib.2.5.9240
  • Sawyer, L.A., Hennessy, J.M., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., & Kyriacou, C.P. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science, 278, 2117–2120. doi:10.1126/science.278.5346.2117
  • Seeley, T.D. (1995). The wisdom of the hive. Cambridge: Harvard University Press.
  • Sitaraman, D., & Zars, T. (2010). Lack of prediction for high-temperature exposures enhances Drosophila place learning. Journal of Experimental Biology, 213, 4018–4022. doi:10.1242/jeb.050344
  • Smith, B.H. (1997). An analysis of blocking in odorant mixtures: An increase but not a decrease in intensity of reinforcement produces unblocking. Behavioral Neuroscience, 111, 57–69. doi:10.1037/0735-7044.111.1.57
  • Smith, B.H., & Burden, C.M. (2014). A proboscis extension response protocol for investigating behavioral plasticity in insects: application to basic, biomedical, and agricultural research. Journal of Visualized Experiments, (91), e51057, doi:10.3791/51057 (2014).
  • Smith, B.H., Abramson, C.I., & Tobin, T.R. (1991). Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. Journal of Comparative Psychology, 105, 345–356. doi:10.1037/0735-7036.105.4.345
  • Stopfer, M., Bhagavan, S., Smith, B.H., & Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390, 70–74. doi:10.1038/36335
  • Strube-Bloss, M.F., Herrera-Valdez, M.A., & Smith, B.H. (2012). Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLOS One, 7, e50322. doi:10.1371/journal.pone.0050322
  • Strube-Bloss, M.F., Nawrot, M.P., & Menzel, R. (2011). Mushroom body output neurons encode odor-reward associations. Journal of Neuroscience, 31, 3129–3140. doi:10.1523/JNEUROSCI.2583-10.2011
  • Tonegawa, S., Nakazawa, K., & Wilson, M.A. (2003). Genetic neuroscience of mammalian learning and memory. Philosophical Transactions of the Royal Society of London B Biological Sciences, 358, 787–795. doi:10.1098/rstb.2002.1243
  • Venken, K.J., Simpson, J.H., & Bellen, H.J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230. doi:10.1016/j.neuron.2011.09.021
  • Williams-Simon, P.A., Posey, C., Mitchell, S., Ng'oma, E., Mrkvicka, J.A., Zars, T., & King, E.G. (2019). Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. Genes, Brain and Behavior, 18, e12581. doi:10.1111/gbb.12581
  • Wolf, S., & Chittka, L. (2016). Male bumblebees. Animal Behavior, 111, 147–155. doi:10.1016/j.anbehav.2015.10.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.