1,997
Views
7
CrossRef citations to date
0
Altmetric
Section 4: Social and sexual behaviors

Intraguild predation between Pristionchus pacificus and Caenorhabditis elegans: a complex interaction with the potential for aggressive behaviour

& ORCID Icon
Pages 404-419 | Received 25 Feb 2020, Accepted 20 Jul 2020, Published online: 15 Oct 2020

References

  • Agrawal, A.A. (2011). Current trends in the evolutionary ecology of plant defence. Functional Ecology, 25(2), 420–432. doi:10.1111/j.1365-2435.2010.01796.x
  • Akduman, N., Lightfoot, J. W., Röseler, W., Witte, H., Lo, W. S., Rödelsperger, C., & Sommer, R. J. (2020). Bacterial vitamin B 12 production enhances nematode predatory behavior. The ISME journal, 14(6), 1494–1507. doi:10.1038/s41396-020-0626-2.
  • Akduman, N., Rödelsperger, C., & Sommer, R.J. (2018). Culture-based analysis of Pristionchus-associated microbiota from beetles and figs for studying nematode-bacterial interactions. PLoS One, 13(6), e0198018. doi:10.1371/journal.pone.0198018
  • Amarasekare, P. (2002). Interference competition and species coexistence. Proceedings. Biological Sciences, 269(1509), 2541–2550. doi:10.1098/rspb.2002.2181
  • Archer, J. (1988). The behavioral biology of aggression. Cambridge, UK: Cambridge University Press.
  • Arim, M., & Marquet, P.A. (2004). Intraguild predation: A widespread interaction related to species biology. Ecology Letters, 7(7), 557–564. doi:10.1111/j.1461-0248.2004.00613.x
  • Avery, L., & Shtonda, B.B. (2003). Food transport in the C. elegans pharynx. Journal of Experimental Biology, 206(14), 2441–2457. doi:10.1242/jeb.00433
  • Baker, R.R. (1983). Insect territoriality. Annual Review of Entomology, 28(1), 65–89. doi:10.1146/annurev.en.28.010183.000433
  • Bandler, R.J. Jr, (1970). Animals spontaneously attacked by rats. Communications Behavior and Biology, 5, 177–182.
  • Bengtson, S. (2002). Origins and early evolution of predation. The Paleontological Society Papers, 8, 289–318. doi:10.1017/S1089332600001133
  • Bento, G., Ogawa, A., & Sommer, R.J. (2010). Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature, 466(7305), 494–497. doi:10.1038/nature09164
  • Berkowitz, L. (1981). The concept of aggression. In P.E. Brain & D. Benton (Eds.), Multidisciplinary approaches to aggression research (pp. 3–15). Amsterdam, Netherlands: Elsevier.
  • Berkowitz, L. (1993). Aggression: Its causes, consequences, and control. New York, NY: McGraw-Hill.
  • Blanchard, R.J., Takahashi, L.K., & Blanchard, D.C. (1977). The development of intruder attack in colonies of laboratory rats. Animal Learning & Behavior, 5(4), 365–369.
  • Boice, R., & Schmeck, R.R. (1968). Predatory behaviors of grasshopper mice (Onychomys leucogaster). American Zoologist, 8(4), 751.
  • Brattstrom, B.H. (1974). The evolution of reptilian social behavior. American Zoologist, 14(1), 35–49. doi:10.1093/icb/14.1.35
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Bridgman, L.J., Innes, J., Gillies, C., Fitzgerald, N.B., Miller, S., & King, C.M. (2013). Do ship rats display predatory behaviour towards house mice? Animal Behaviour, 86(2), 257–268. doi:10.1016/j.anbehav.2013.05.013
  • Brown, J.L., & Orians, G.H. (1970). Spacing patterns in mobile animals. Annual Review of Ecology and Systematics, 1(1), 239–262. doi:10.1146/annurev.es.01.110170.001323
  • Brown, K.P., Moller, H., Innes, J., & Alterio, N. (1996). Calibration of tunnel tracking rates to estimate relative abundance of ship rats (Rattus rattus) and mice (Mus musculus) in a New Zealand forest. New Zealand Journal of Ecology, 20(2), 271–275.
  • Bumbarger, D.J., Riebesell, M., Rödelsperger, C., & Sommer, R.J. (2013). System-wide rewiring underlies behavioral differences in predatory and bacterial-feeding nematodes. Cell, 152(1–2), 109–119. doi:10.1016/j.cell.2012.12.013
  • Burt, W.H. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24(3), 346–352. doi:10.2307/1374834
  • Buss, A.H. (1961). The psychology of aggression. New York, NY: Wiley.
  • Byerly, L., Cassada, R.C., & Russell, R.L. (1976). The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Developmental Biology, 51(1), 23–33. doi:10.1016/0012-1606(76)90119-6
  • Calhoun, A.J., Tong, A., Pokala, N., Fitzpatrick, J.A., Sharpee, T.O., & Chalasani, S.H. (2015). Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans. Neuron, 86(2), 428–441. doi:10.1016/j.neuron.2015.03.026
  • Case, T.J., & Gilpin, M.E. (1974). Interference competition and niche theory. Proceedings of the National Academy of Sciences, 71(8), 3073–3077. doi:10.1073/pnas.71.8.3073
  • Caut, S., Casanovas, J.G., Virgos, E., Lozano, J., Witmer, G.W., & Courchamp, F. (2007). Rats dying for mice: Modelling the competitor release effect. Austral Ecology, 32(8), 858–868. doi:10.1111/j.1442-9993.2007.01770.x
  • Cavalier-Smith, T. (2009). Predation and eukaryote cell origins: A coevolutionary perspective. The International Journal of Biochemistry & Cell Biology, 41(2), 307–322. doi:10.1016/j.biocel.2008.10.002
  • Chen, S., Lee, A.Y., Bowens, N.M., Huber, R., & Kravitz, E.A. (2002). Fighting fruit flies: A model system for the study of aggression. Proceedings of the National Academy of Sciences, 99(8), 5664–5668. doi:10.1073/pnas.082102599
  • Cinkornpumin, J.K., & Hong, R.L. (2011). RNAi mediated gene knockdown and transgenesis by microinjection in the necromenic nematode Pristionchus pacificus. JoVE (Journal of Visualized Experiments), 56, e3270.
  • Cody, M.L. (1969). Convergent characteristics in sympatric species: A possible relation to interspecific competition and aggression. The Condor, 71(3), 223–239. doi:10.2307/1366300
  • Cook, R.M., & Cockrell, B.J. (1978). Predator ingestion rate and its bearing on feeding time and the theory of optimal diets. The Journal of Animal Ecology, 47(2), 529–547. doi:10.2307/3799
  • Crane, J. (1966). Combat, display and ritualization in fiddler crabs (Ocypodidae, genus Uca). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 251(772), 459–472.
  • Darwin, C. (1896). Charles Darwin’s works: The descent of man and selection in relation to sex (Vol. 9). New York, NY: D. Appleton.
  • Davidov, Y., & Jurkevitch, E. (2009). Predation between prokaryotes and the origin of eukaryotes. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 31(7), 748–757. doi:10.1002/bies.200900018
  • Dawkins, R., & Krebs, J.R. (1979). Arms races between and within species. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205(1161), 489–511.
  • De Bono, M., & Bargmann, C.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5), 679–689. doi:10.1016/S0092-8674(00)81609-8
  • De Waal, F.B. (2000). Primates-a natural heritage of conflict resolution. Science, 289(5479), 586–590. doi:10.1126/science.289.5479.586
  • Desisto, M.J., & Huston, J.P. (1970). Effect of territory on frog-killing by rats. The Journal of General Psychology, 83, 179–184. doi:10.1080/00221309.1970.9710800
  • Dickinson, D.J., & Goldstein, B. (2016). CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics, 202(3), 885–901. doi:10.1534/genetics.115.182162
  • Dieterich, C., Clifton, S.W., Schuster, L.N., Chinwalla, A., Delehaunty, K., Dinkelacker, I., … Sommer, R.J. (2008). The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genetics, 40(10), 1193–1198. doi:10.1038/ng.227
  • Dirksen, P., Marsh, S.A., Braker, I., Heitland, N., Wagner, S., Nakad, R., … Schulenburg, H. (2016). The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biology, 14(1), 38. doi:10.1186/s12915-016-0258-1
  • Félix, M.A., Hill, R.J., Schwarz, H., Sternberg, P.W., Sudhaus, W., & Sommer, R.J. ((1999). Pristionchus pacificus, a nematode with only three juvenile stages, displays major heterochronic changes relative to Caenorhabditis elegans. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1429), 1617–1621. 1999). doi:10.1098/rspb.1999.0823
  • Félix, M.-A., Ailion, M., Hsu, J.C., Richaud, A., & Wang, J. (2018). Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS One, 13(8), e0200851. doi:10.1371/journal.pone.0200851
  • Flynn, J.P. (1967). The neural basis of aggression in cats. In D.C. Glass (Ed.), Neurophysiology and emotion (pp. 40–60). New York, NY: Rockefeller University Press and Russell Sage Foundation.
  • Flynn, J.P., Vanegas, H., Foote, W., & Edwards, S. (1970). Neural mechanisms involved in a cat’s attack on a rat. In The neural control of behavior (pp. 135–173). Waltham, MA: Academic Press.
  • Formanowicz, D.R. Jr, (1984). Foraging tactics of an aquatic insect: Partial consumption of prey. Animal Behaviour, 32(3), 774–781. doi:10.1016/S0003-3472(84)80153-0
  • Gendreau, P.L., & Archer, J. (2005). Subtypes of Aggression in Humans and Animals. In R.E. Tremblay, W.W. Hartup, & J. Archer (Eds.), Developmental origins of aggression (pp. 25–46). New York, NY: Guilford Press.
  • Gerking, S.D. (1959). The restricted movement of fish populations. Biological Reviews, 34(2), 221–242. doi:10.1111/j.1469-185X.1959.tb01289.x
  • Gill, D.E. (1974). Intrinsic rate of increase, saturation density, and competitive ability. II. The evolution of competitive ability. The American Naturalist, 108(959), 103–116. doi:10.1086/282888
  • Gray, J.M., Karow, D.S., Lu, H., Chang, A.J., Chang, J.S., Ellis, R.E., … Bargmann, C.I. (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 430(6997), 317–322. doi:10.1038/nature02714
  • Grether, G.F., Anderson, C.N., Drury, J.P., Kirschel, A.N., Losin, N., Okamoto, K., & Peiman, K.S. (2013). The evolutionary consequences of interspecific aggression. Annals of the New York Academy of Sciences, 1289(1), 48–68. doi:10.1111/nyas.12082
  • Grether, G.F., Losin, N., Anderson, C.N., & Okamoto, K. (2009). The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biological Reviews of the Cambridge Philosophical Society, 84(4), 617–635. doi:10.1111/j.1469-185X.2009.00089.x
  • Harrold, C., & Reed, D.C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology, 66(4), 1160–1169. doi:10.2307/1939168
  • Herrmann, M., Mayer, W.E., Hong, R.L., Kienle, S., Minasaki, R., & Sommer, R.J. (2007). The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zoological Science, 24(9), 883–889. doi:10.2108/zsj.24.883
  • Holt, R.D., & Huxel, G.R. (2007). Alternative prey and the dynamics of intraguild predation: Theoretical perspectives. Ecology, 88(11), 2706–2712. doi:10.1890/06-1525.1
  • Holt, R.D., & Polis, G.A. (1997). A theoretical framework for intraguild predation. The American Naturalist, 149(4), 745–764. doi:10.1086/286018
  • Hong, R.L. (2015). Pristionchus pacificus olfaction. In R.J. Sommer (Ed.), Pristionchus pacificus: a nematode model for comparative and evolutionary biology., (pp. 331–352. Leiden, Netherlands: Brill.
  • Hong, R.L., & Sommer, R.J. (2006a). Chemoattraction in Pristionchus nematodes and implications for insect recognition. Current Biology, 16(23), 2359–2365. doi:10.1016/j.cub.2006.10.031
  • Hong, R.L., & Sommer, R.J. (2006b). Pristionchus pacificus: A well-rounded nematode. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 28(6), 651–659. doi:10.1002/bies.20404
  • Hong, R.L., Riebesell, M., Bumbarger, D.J., Cook, S.J., Carstensen, H.R., Sarpolaki, T., … Hobert, O. (2019). Evolution of neuronal anatomy and circuitry in two highly divergent nematode species. Elife, 8, e47155.
  • Howard, H.E. (1920). Territory in bird life. New York, NY: EP. Dutton & Company.
  • Hsu, S.B. (1982). On a resource based ecological competition model with interference. Journal of Mathematical Biology, 12(1), 45–52. doi:10.1007/BF00275202
  • Hutchinson, R.R., & Renfrew, J.W. (1966). Stalking attack and eating behaviors elicited from the same sites in the hypothalamus. Journal of Comparative and Physiological Psychology, 61(3), 360–367. doi:10.1037/h0023250
  • Huxley, J. (1966). Introduction: A discussion on ritualization of behaviour in animals and man. Philosophical Transactions of the Royal Society of London, Series B}, 251, 249–271.
  • Innes, J., Warburton, B., Williams, D., Speed, H., & Bradfield, P. (1995). Large-scale poisoning of ship rats (Rattus rattus) in indigenous forests of the North Island, New Zealand. New Zealand Journal of Ecology, 19(1), 5–17.
  • Issa, F.A., & Edwards, D.H. (2006). Ritualized submission and the reduction of aggression in an invertebrate. Current Biology, 16(22), 2217–2221. doi:10.1016/j.cub.2006.08.065
  • Jedrzejewska, B., & Jedrzejewski, W. (1989). Seasonal surplus killing as hunting strategy of the weasel Mustela nivalis-test of a hypothesis. Acta Theriologica, 34(12–28), 347–360.
  • Karli, P. (1956). The Norway rat’s killing response to the white mouse: An experimental analysis. Behaviour, 10(1), 81–103. doi:10.1163/156853956X00110
  • Kaufmann, J.H. (1983). On the definitions and functions of dominance and territoriality. Biological Reviews, 58(1), 1–20. doi:10.1111/j.1469-185X.1983.tb00379.x
  • Kemble, E.D., & Davies, V.A. (1981). Effects of prior environmental enrichment and amygdaloid lesions on consumatory behavior, activity, predation, and shuttlebox avoidance in male and female rats. Physiological Psychology, 9(4), 340–346. doi:10.3758/BF03326991
  • King, C.M., Innes, J.G., Flux, M., Kimberley, M.O., Leathwick, J.R., & Williams, D.S. (1996). Distribution and abundance of small mammals in relation to habitat in Pureora Forest Park. New Zealand Journal of Ecology, 20(2), 215–240.
  • King, J.A. (1973). The ecology of aggressive behavior. Annual Review of Ecology and Systematics, 4(1), 117–138. doi:10.1146/annurev.es.04.110173.001001
  • Koneru, S.L., Salinas, H., Flores, G.E., & Hong, R.L. (2016). The bacterial community of entomophilic nematodes and host beetles. Molecular Ecology, 25(10), 2312–2324. doi:10.1111/mec.13614
  • Kravitz, E.A., & Huber, R. (2003). Aggression in invertebrates. Current Opinion in Neurobiology, 13(6), 736–743. doi:10.1016/j.conb.2003.10.003
  • Kruuk, H. (2009). Surplus killing by carnivores. Journal of Zoology, 166(2), 233–244. doi:10.1111/j.1469-7998.1972.tb04087.x
  • Lancaster, C.E., Ho, C.Y., Hipolito, V.E., Botelho, R.J., & Terebiznik, M.R. (2019). Phagocytosis: What’s on the menu? Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire, 97(1), 21–29. doi:10.1139/bcb-2018-0008
  • Landry, S.O. Jr, (1970). The Rodentia as omnivores. The Quarterly Review of Biology, 45(4), 351–372. doi:10.1086/406647
  • Leyhausen, P. (1973). On the function of the relative hierarchy of moods (as exemplified by the phylogenetic and ontogenetic development of prey-catching in carnivores). In K. Lorenz & P. Leyhausen (Eds.), Motivation of human and animal behavior (pp. 144–247). London, UK: Van Nostrand Reinhold.
  • Lightfoot, J.W., Wilecki, M., Rödelsperger, C., Moreno, E., Susoy, V., Witte, H., & Sommer, R.J. (2019). Small peptide-mediated self-recognition prevents cannibalism in predatory nematodes. Science, 364(6435), 86–89. doi:10.1126/science.aav9856
  • Lima, S.L., & Dill, L.M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68(4), 619–640. doi:10.1139/z90-092
  • Lincoln, A.E., & Quinn, T.P. (2019). Optimal foraging or surplus killing: Selective consumption and discarding of salmon by brown bears. Behavioral Ecology, 30(1), 202–212. doi:10.1093/beheco/ary139
  • Liu, Z., Kariya, M.J., Chute, C.D., Pribadi, A.K., Leinwand, S.G., Tong, A., … Chalasani, S.H. (2018). Predator-secreted sulfolipids induce defensive responses in C. elegans. Nature Communications, 9(1), 1128. doi:10.1038/s41467-018-03333-6
  • Lorenz, K. (1966). On aggression. New York, NY: Harcourt, Brace and World.
  • Lounibos, L.P., Makhni, S., Alto, B.W., & Kesavaraju, B. (2008). Surplus killing by predatory larvae of Corethrella appendiculata: Prepupal timing and site-specific attack on mosquito prey. Journal of Insect Behavior, 21(2), 47–54. doi:10.1007/s10905-007-9103-2
  • MacLean, S.F., Jr., & Seastedt, T.R. (1979). Avian territoriality: Sufficient resources or interference competition. The American Naturalist, 114(2), 308–312.
  • May, R.C., Loman, N.J., Haines, A.S., Pallen, M.J., Boehnisch, C., Penn, C.W., … Kim, J. (2009). The genome sequence of E. coli OP50. Worm Breeding Gazette, 18, 24.
  • McFadden, G.I., Gilson, P.R., Hofmann, C., Adcock, G.J., & Maier, U.-G. (1994). Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proceedings of the National Academy of Sciences, 91(9), 3690–3694. doi:10.1073/pnas.91.9.3690
  • Meyer, J.M., Baskaran, P., Quast, C., Susoy, V., Rödelsperger, C., Glöckner, F.O., & Sommer, R.J. (2017). Succession and dynamics of Pristionchus nematodes and their microbiome during decomposition of Oryctes borbonicus on La Réunion Island. Environmental Microbiology, 19(4), 1476–1489. doi:10.1111/1462-2920.13697
  • Miller, C.J., & Miller, T.K. (1995). Population dynamics and diet of rodents on Rangitoto Island, New Zealand, including the effect of a 1080 poison operation. New Zealand Journal of Ecology, 19(1), 19–27.
  • Moreno, E., McGaughran, A., Rödelsperger, C., Zimmer, M., & Sommer, R.J. (2016). Oxygen-induced social behaviours in Pristionchus pacificus have a distinct evolutionary history and genetic regulation from Caenorhabditis elegans. Proceedings. Biological Sciences, 283(1825), 20152263. doi:10.1098/rspb.2015.2263
  • Moyer, K.E. (1968). Kinds of aggression and their physiological basis. Communications in Behavioral Biology, 2(2), 65–87.
  • Moynihan, M., & Moynihan, M. (1998). The social regulation of competition and aggression in animals. Washington, DC: Smithsonian Institution Press.
  • Mueller, D.L., & Hastings, B.C. (1977). A clarification of “surplus killing”. Animal Behaviour, 25, 1065. doi:10.1016/0003-3472(77)90059-8
  • Murray, B.G. (1981). The origins of adaptive interspecific territorialism. Biological Reviews, 56(1), 1–22. doi:10.1111/j.1469-185X.1981.tb00341.x
  • Myer, J.S. (1967). Prior killing experience and the suppressive effects of punishment on the killing of mice by rats. Animal Behaviour, 15(1), 59–61. doi:10.1016/S0003-3472(67)80011-3
  • Myer, J.S. (1969). Early experience and the development of mouse killing by rats. Journal of Comparative and Physiological Psychology, 67(1), 46–49. doi:10.1037/h0026657
  • Myer, J.S. (1971). Experience and the stability of mouse killing by rats. Journal of Comparative and Physiological Psychology, 75(2), 264–268. doi:10.1037/h0030819
  • Namdeo, S., Moreno, E., Rödelsperger, C., Baskaran, P., Witte, H., & Sommer, R.J. (2018). Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development, 145(13), dev166272. doi:10.1242/dev.166272
  • Nance, J., & Frøkjaer-Jensen, C. (2019). The Caenorhabditis elegans transgenic toolbox. Genetics, 212(4), 959–990. doi:10.1534/genetics.119.301506
  • Nelson, R.J. (2000). Affiliative and aggressive behavior. In An introduction to behavioral endocrinology (3rd ed., pp. 395–445). Sunderland, MA: Sinauer.
  • Nelson, R.J. (Ed.). (2005). Biology of aggression. Oxford, UK: Oxford University Press.
  • Nice, M.M. (1941). The role of territory in bird life. American Midland Naturalist, 26(3), 441–487. doi:10.2307/2420732
  • Nishikawa, K.C. (1987). Interspecific aggressive behaviour in salamanders: Species-specific interference or misidentification? Animal Behaviour, 35(1), 263–270. doi:10.1016/S0003-3472(87)80232-4
  • Nunn, G.L., Klem, D., Jr, Kimmel, T., & Merriman, T. (1976). Surplus killing and caching by American kestrels (Falco sparverius). Animal Behaviour, 24(4), 759–763. doi:10.1016/S0003-3472(76)80005-X
  • O’Callaghan, K.M., Zenner, A.N., Hartley, C.J., & Griffin, C.T. (2014). Interference competition in entomopathogenic nematodes: Male Steinernema kill members of their own and other species. International Journal for Parasitology, 44(13), 1009–1017.
  • O’Boyle, M. (1974). Rats and mice together: The predatory nature of the rat’s mouse-killing response. Psychological Bulletin, 81(4), 261–269. doi:10.1037/h0036175
  • O’Boyle, M. (1975). The rat as a predator. Psychological Bulletin, 82 (3), 460–462. doi:10.1037/0033-2909.82.3.460
  • Ogawa, A., Streit, A., Antebi, A., & Sommer, R.J. (2009). A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Current Biology, 19(1), 67–71. doi:10.1016/j.cub.2008.11.063
  • Okumura, M., Wilecki, M., & Sommer, R.J. (2017). Serotonin drives predatory feeding behavior via synchronous feeding rhythms in the nematode Pristionchus pacificus. G3, 7(11), 3745–3755. doi:10.1534/g3.117.300263
  • Olivier, B., & Young, L.J. (2002). Animal models of aggression. In K.L. Davis, D. Charney, J.T. Coyle, & C. Nemeroff, Neuropsychopharmacology: The Fifth Generation of Progress (pp. 1699–1706). Philadelphia, PA: Lippincott.
  • Paul, L. (1972). Predatory attack by rats: Its relationship to feeding and type of prey. Journal of Comparative and Physiological Psychology, 78(1), 69–76. doi:10.1037/h0032187
  • Paul, L., & Posner, I. (1973). Predation and feeding: Comparisons of feeding behavior of killer and nonkiller rats. Journal of Comparative and Physiological Psychology, 84(2), 258–264. doi:10.1037/h0035321
  • Paul, L., Miley, W.M., & Baenninger, R. (1971). Mouse killing by rats: Roles of hunger and thirst in its initiation and maintenance. Journal of Comparative and Physiological Psychology, 76(2), 242–249. doi:10.1037/h0031394
  • Peiman, K., & Robinson, B. (2010). Ecology and evolution of resource-related heterospecific aggression. The Quarterly Review of Biology, 85(2), 133–158. doi:10.1086/652374
  • Polis, G.A., Myers, C.A., & Holt, R.D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20(1), 297–330. doi:10.1146/annurev.es.20.110189.001501
  • Polis, G. A., & Holt, R. D. (1992). Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology & Evolution, 7(5), 151–154.
  • Polsky, R.H. (1975). Hunger, prey feeding, and predatory aggression. Behavioral Biology, 13(1), 81–93. doi:10.1016/S0091-6773(75)90823-8
  • Pringle, R. M., Kartzinel, T. R., Palmer, T. M., Thurman, T. J., Fox-Dobbs, K., Xu, C. C., … & Gotanda, K. M. (2019). Predator-induced collapse of niche structure and species coexistence. Nature, 570(7759), 58–64. doi: 10.1038/s41586-019-1264-6.
  • Rae, R., Riebesell, M., Dinkelacker, I., Wang, Q., Herrmann, M., Weller, A.M., … Sommer, R.J. (2008). Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. The Journal of Experimental Biology, 211(12), 1927–1936. doi:10.1242/jeb.014944
  • Ragsdale, E.J., Kanzaki, N., & Herrmann, M. (2015). Taxonomy and natural history: the genus Pristionchus. In R.J. Sommer (Ed.), Pristionchus pacificus: a nematode model for comparative and evolutionary biology (pp. 77–120). Leiden, The Netherlands: Brill.
  • Ragsdale, E.J., Müller, M.R., Rödelsperger, C., & Sommer, R.J. (2013). A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell, 155(4), 922–933. doi:10.1016/j.cell.2013.09.054
  • Rasa, O.A.E. (1973). Prey capture, feeding techniques, and their ontogeny in the African dwarf mongoose, Helogale undulata rufula. Zeitschrift Fur Tierpsychologie, 32(5), 449–488. doi:10.1111/j.1439-0310.1973.tb01117.x
  • Roger, A.J. (1999). Reconstructing early events in eukaryotic evolution. The American Naturalist, 154(S4), S146–S163. doi:10.1086/303290
  • Ruscoe, W.A., & Murphy, E.C. (2005). House mouse. In C.M. King (Ed.), The handbook of New Zealand mammals (pp. 204–221). Oxford, UK: Oxford University Press.
  • Samuel, B.S., Rowedder, H., Braendle, C., Félix, M.A., & Ruvkun, G. (2016). Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences, 113(27), E3941–E3949. doi:10.1073/pnas.1607183113
  • Sawin, E.R., Ranganathan, R., & Horvitz, H.R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26(3), 619–631. doi:10.1016/S0896-6273(00)81199-X
  • Schaller, G.B. (2009). The Serengeti lion: a study of predator-prey relations. Chicago, IL: University of Chicago Press.
  • Schlager, B., Wang, X., Braach, G., & Sommer, R.J. (2009). Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis, 47(5), 300–304. doi:10.1002/dvg.20499
  • Schulenburg, H., & Félix, M.A. (2017). The natural biotic environment of Caenorhabditis elegans. Genetics, 206(1), 55–86. doi:10.1534/genetics.116.195511
  • Serobyan, V., Ragsdale, E.J., & Sommer, R.J. (2014). Adaptive value of a predatory mouth-form in a dimorphic nematode. Proceedings of the Royal Society. Biological Sciences, 281(1791), 20141334. doi:10.1098/rspb.2014.1334
  • Sheth, R.U., Cabral, V., Chen, S.P., & Wang, H.H. (2016). Manipulating bacterial communities by in situ microbiome engineering. Trends in Genetics, 32(4), 189–200. doi:10.1016/j.tig.2016.01.005
  • Shtonda, B.B., & Avery, L. (2006). Dietary choice behavior in Caenorhabditis elegans. The Journal of Experimental Biology, 209(1), 89–102. doi:10.1242/jeb.01955
  • Siegel, A., & Brutus, M. (1990). Neural substrates of aggression and rage in the cat. Progress in Psychobiology and Physiological Psychology, 14, 135–233.
  • Siegel, A., & Pott, C.B. (1988). Neural substrates of aggression and flight in the cat. Progress in Neurobiology, 31(4), 261–283. doi:10.1016/0301-0082(88)90015-9
  • Siegel, A., & Shaikh, M.B. (1997). The neural bases of aggression and rage in the cat. Aggression and Violent Behavior, 2(3), 241–271. doi:10.1016/S1359-1789(96)00010-9
  • Sih, A. (1980). Optimal foraging: Partial consumption of prey. The American Naturalist, 116(2), 281–290. doi:10.1086/283626
  • Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22(1), 115–143. doi:10.1146/annurev.es.22.110191.000555
  • Simpson, E.H., & Balsam, P.D. (Eds.). (2016). Behavioral neuroscience of motivation (pp. 1–12). New York, NY: Springer.
  • Solheim, R. (1984). Caching behaviour, prey choice and surplus killing by pygmy owls Glaucidium passerinum during winter, a functional response of a generalist predator. Annales Zoologici Fennici, 21(3), 301–308.
  • Sommer, R.J. (Ed). (2015). Pristionchus pacificus: A nematode model for comparative and evolutionary biology. Leiden, The Netherlands: Brill.
  • Sommer, R.J., Carta, L.K., Kim, S-y., & Sternberg, P.W. (1996). Morphological, genetic and molecular description of Pristionchus pacificus sp. n.(Nematoda: Neodiplogasteridae). Fundamental and Applied Nematology, 19, 511–522.
  • Sommers, P., & Chesson, P. (2019). Effects of predator avoidance behavior on the coexistence of competing prey. The American Naturalist, 193(5), E132–E148. doi:10.1086/701780
  • Srinivasan, J., Durak, O., & Sternberg, P.W. (2008). Evolution of a polymodal sensory response network. BMC Biology, 6(1), 52. doi:10.1186/1741-7007-6-52
  • Stapp, P. (1997). Community structure of shortgrass‐prairie rodents: Competition or risk of intraguild predation? Ecology, 78(5), 1519–1530.
  • Sunde, P., Overskaug, K., & Kvam, T. (1999). Intraguild predation of lynxes on foxes: Evidence of interference competition? Ecography, 22(5), 521–523. doi:10.1111/j.1600-0587.1999.tb01281.x
  • Taylor, R.J. (1984). Predation. London, UK: Chapman and Hall.
  • Tilman, D. (1982). Resource competition and community structure. Princeton, NJ: Princeton University Press.
  • Tynkkynen, K., Rantala, M.J., & Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. Journal of Evolutionary Biology, 7(4), 759–767.
  • Vance, R.R. (1984). Interference competition and the coexistence of two competitors on a single limiting resource. Ecology, 65(5), 1349–1357. doi:10.2307/1939115
  • von Lieven, A.F., & Sudhaus, W. (2000). Comparative and functional morphology of the buccal cavity of Diplogastrina (Nematoda) and a first outline of the phylogeny of this taxon. Journal of Zoological Systematics and Evolutionary Research, 38(1), 37–63. doi:10.1046/j.1439-0469.2000.381125.x
  • von Lieven, A.F. (2005). The embryonic moult in diplogastrids (Nematoda)–homology of developmental stages and heterochrony as a prerequisite for morphological diversity. Zoologischer Anzeiger-A Journal of Comparative Zoology, 244(1), 79–91.
  • Wasman, M., & Flynn, J.P. (1962). Directed attack elicited from hypothalamus. Archives of Neurology, 6(3), 220–227. doi:10.1001/archneur.1962.00450210048005
  • Wilecki, M., Lightfoot, J.W., Susoy, V., & Sommer, R.J. (2015). Predatory feeding behaviour in Pristionchus nematodes is dependent on phenotypic plasticity and induced by serotonin. The Journal of Experimental Biology, 218(Pt 9), 1306–1313. doi:10.1242/jeb.118620
  • Witte, H., Moreno, E., Rödelsperger, C., Kim, J., Kim, J. S., Streit, A., & Sommer, R. J. (2015). Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Development Genes and Evolution, 225(1), 55–62. doi:10.1007/s00427-014-0486-8
  • Zenner, A.N., O’Callaghan, K.M., & Griffin, C.T. (2014). Lethal fighting in nematodes is dependent on developmental pathway: Male-male fighting in the entomopathogenic nematode Steinernema longicaudum. PLoS One, 9(2), e89385. doi:10.1371/journal.pone.0089385
  • Zimmermann, B., Sand, H., Wabakken, P., Liberg, O., & Andreassen, H.P. (2015). Predator-dependent functional response in wolves: From food limitation to surplus killing . The Journal of Animal Ecology, 84(1), 102–112. doi:10.1111/1365-2656.12280
  • Zong, C., Wauters, L.A., Rong, K., Martinoli, A., Preatoni, D., & Tosi, G. (2012). Nutcrackers become choosy seed harvesters in a mast-crop year. Ethology Ecology & Evolution, 24(1), 54–61.