9,264
Views
232
CrossRef citations to date
0
Altmetric
Survey Paper

Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 764-799 | Received 18 Oct 2018, Accepted 20 Jun 2019, Published online: 04 Jul 2019

References

  • Krüger J, Lien TK, Verl A. Cooperation of human and machines in assembly lines. CIRP Ann Manuf Technol. 2009;58(2):628–646.
  • Angerer A, Hoffmann A, Schierl A, et al. Robotics API: object-oriented software development for industrial robots. J Softw Eng Robot. 2013;4(1):1–22.
  • Hvilshøj M, Bøgh S, Madsen O, et al. The mobile robot ‘little helper’: concepts, ideas and working principles. 2009 IEEE Conference on Emerging Technologies & Factory Automation. ETFA 2009. IEEE; 2009. p. 1–4.
  • Hvilshøj M, Bøgh S, Nielsen OS, et al. Autonomous industrial mobile manipulation (AIMM): past, present and future. Ind Robot Int J. 2012;39(2):120–135.
  • Akli I, Bouzouia B. Time-dependent trajectory generation for tele-operated mobile manipulator. 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT). IEEE; 2015. p. 1–5.
  • Duffy BR. Anthropomorphism and the social robot. Rob Auton Syst. 2003;42(3–4):177–190.
  • Schmidtler J, Knott V, Hölzel C, et al. Human centered assistance applications for the working environment of the future. Occup Ergon. 2015;12(3):83–95.
  • Bortot DF. Ergonomic human-robot coexistence in the branch of production [PhD thesis]. Technische Universität München; 2014.
  • Fang H, Ong S, Nee A. A novel augmented reality-based interface for robot path planning. Int J Interact Des Manuf (IJIDeM). 2014;8(1):33–42.
  • Chandrasekaran B, Conrad JM. Human-robot collaboration: a survey. SoutheastCon 2015. IEEE; 2015. p. 1–8.
  • Vaughan B, Han JG, Kilmartin E, et al. Designing and implementing a platform for collecting multi-modal data of human-robot interaction. Acta Polytech Hung. 2012;9(1):7–17.
  • Stadler S, Weiss A, Mirnig N, et al. Anthropomorphism in the factory: a paradigm change? Proceedings of the 8th ACM/IEEE international conference on Human-robot interaction. IEEE Press; 2013. p. 231–232.
  • Solvang B, Sziebig G. On industrial robots and cognitive info-communication. 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom). IEEE; 2012. p. 459–464.
  • Dániel B, Korondi P, Sziebig G, et al. Evaluation of flexible graphical user interface for intuitive human robot interactions. Acta Polytech Hung. 2014;11(1):135–151.
  • Bengler K, Zimmermann M, Bortot D, et al. Interaction principles for cooperative human-machine systems. IT-Inform Technol. 2012;54(4):157–164.
  • Bicchi A, Peshkin MA, Colgate JE. Safety for physical human–robot interaction. In: Siciliano B, Khatib O, editor. Springer handbook of robotics. Heidelberg: Springer; 2008. p. 1335–1348.
  • Andrisano AO, Leali F, Pellicciari M, et al. Hybrid reconfigurable system design and optimization through virtual prototyping and digital manufacturing tools. Int J Interact Des Manuf (IJIDeM). 2012;6(1):17–27.
  • Schiavi R, Bicchi A, Flacco F. Integration of active and passive compliance control for safe human-robot coexistence. 2009 IEEE International Conference on Robotics and Automation. IEEE; 2009. p. 259–264.
  • Shen Y, Reinhart G, Tseng M. A design approach for incorporating task coordination for human-robot-coexistence within assembly systems. 2015 Annual IEEE Systems Conference (SysCon) Proceedings. IEEE; 2015. p. 426–431.
  • Gaz C, Magrini E, De Luca A. A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics. 2018;55:234–247.
  • De Luca A, Flacco F. Integrated control for PHRI: collision avoidance, detection, reaction and collaboration. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE; 2012. p. 288–295.
  • Wang N, Zeng Y, Geng J. A brief review on safety strategies of physical human-robot interaction. ITM Web of Conferences. Vol. 25. EDP Sciences; 2019. p. 01015.
  • Flacco F, Kroeger T, De Luca A, et al. A depth space approach for evaluating distance to objects. J Intell Robot Syst. 2015;80(1):7–22.
  • Cherubini A, Passama R, Meline A, et al. Multimodal control for human-robot cooperation. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2013. p. 2202–2207.
  • Mansard N, Khatib O, Kheddar A. A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans Robot. 2009;25(3):670–685.
  • Mörtl A, Lawitzky M, Kucukyilmaz A, et al. The role of roles: physical cooperation between humans and robots. Int J Rob Res. 2012;31(13):1656–1674.
  • Mainprice J, Sisbot EA, Siméon T, et al. Planning safe and legible hand-over motions for human-robot interaction. IARP/IEEE-RAS/EURON Workshop on Technical Challenges for Dependable Robots in Human Environments. 2010.
  • Fujii M, Murakami H, Sonehara M. Study on application of a human-robot collaborative system using hand-guiding in a production line. IHI Eng Rev. 2016;49(1):24–29.
  • Jarrassé N, Charalambous T, Burdet E. A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE. 2012;7(11):e49945.
  • Akella P, Peshkin M, Colgate E, et al. Cobots for the automobile assembly line. 1999 IEEE International Conference on Robotics and Automation; 1999. Proceedings. Vol. 1. IEEE; 1999. p. 728–733.
  • Peshkin M, Colgate JE. Cobots. Ind Robot Int J. 1999;26(5):335–341.
  • Brending S, Lawo M, Pannek J, et al. Certifiable software architecture for human robot collaboration in industrial production environments. IFAC-PapersOnLine. 2017;50(1):1983–1990.
  • Universal robots. 2017. Available from: https://www.universal-robots.com/products/ur5-robot/
  • Bluethmann W, Ambrose R, Diftler M, et al. Robonaut: a robot designed to work with humans in space. Auton Robots. 2003;14(2–3):179–197.
  • Soratana T, Balakuntala MV, Abbaraju P, et al. Glovebox handling of high-consequence materials with super baxter and gesture-based programming – 18598. Waste Management (WM 2018), 44th International Symposium on; Phoenix, AZ, USA; 2018. p. 1–14.
  • Kuka robotics. 2017. Available from: http://www.kuka-robotics.com/
  • Bitonneau D, Moulières-Seban T, Dumora J, et al. Human-centered design of an interactive industrial robot system through participative simulations: application to a pyrotechnic tank cleaning workstation. 26th IEEE International Symposium on Robot and Human Interactive Communication; Lisbon, Portugal; 2017.
  • Ge JG. Programming by demonstration by optical tracking system for dual arm robot. IEEE ISR 2013. IEEE; 2013. p. 1–7.
  • Stenmark M, Haage M, Topp EA, et al. Supporting semantic capture during kinesthetic teaching of collaborative industrial robots. Int J Semant Comput. 2018;12(1):167–186.
  • Stenmark M, Malec J. Knowledge-based instruction of manipulation tasks for industrial robotics. Robot Comput Integr Manuf. 2015;33:56–67.
  • Klotzbücher M, Bruyninckx H. Coordinating robotic tasks and systems with rfsm statecharts. J Softw Eng Robot. 2012;3(1):28–56.
  • Gammieri L, Schumann M, Pelliccia L, et al. Coupling of a redundant manipulator with a virtual reality environment to enhance human-robot cooperation. Procedia CIRP. 2017;62:618–623.
  • Apas: humans and machines hand in hand. 2018. Available from: https://www.bosch-apas.com/en/home/
  • Tsarouchi P, Makris S, Michalos G, et al. Ros based coordination of human robot cooperative assembly tasks-an industrial case study. Procedia CIRP. 2015;37:254–259.
  • Krüger J, Wang L, Verl A, et al. Innovative control of assembly systems and lines. CIRP Ann. 2017;66(2):707–730.
  • Unhelkar VV, Siu HC, Shah JA. Comparative performance of human and mobile robotic assistants in collaborative fetch-and-deliver tasks. 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE; 2014. p. 82–89.
  • De Luca A, Albu-Schaffer A, Haddadin S, et al. Collision detection and safe reaction with the dlr-iii lightweight manipulator arm. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2006. p. 1623–1630.
  • Haddadin S, Albu-Schäffer A, Hirzinger G. Requirements for safe robots: measurements, analysis and new insights. Int J Rob Res. 2009;28(11–12):1507–1527.
  • Geravand M, Flacco F, De Luca A. Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture. 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2013. p. 4000–4007.
  • Haddadin S, Albu-Schaffer A, Frommberger M, et al. The ‘DLR crash report’: towards a standard crash-testing protocol for robot safety – part II: discussions. 2009 IEEE International Conference on Robotics and Automation. ICRA'09. IEEE; 2009. p. 280–287.
  • Albu-Schäffer A, Haddadin S, Ott C, et al. The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot Int J. 2007;34(5):376–385.
  • Haddadin S, Albu-Schaffer A, De Luca A, et al. Collision detection and reaction: a contribution to safe physical human-robot interaction. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2008. IEEE; 2008. p. 3356–3363.
  • Bischoff R, Kurth J, Schreiber G, et al. The kuka-dlr lightweight robot arm-a new reference platform for robotics research and manufacturing. ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). VDE; 2010. p. 1–8.
  • Scholtz J. Theory and evaluation of human robot interactions. 2003 Proceedings of the 36th Annual Hawaii International Conference on System Sciences. IEEE; 2003. p. 10–pp.
  • Modares H, Ranatunga I, Lewis FL, et al. Optimized assistive human–robot interaction using reinforcement learning. IEEE Trans Cybern. 2016;46(3):655–667.
  • Müller R, Vette M, Mailahn O. Process-oriented task assignment for assembly processes with human-robot interaction. Procedia CIRP. 2016;44:210–215.
  • Dimoulas KN. Human robot collaboration (HRC) for assembly operations using industrial robots [PhD thesis]. University of Patras, Department of Mechanical Engineering & Aeronautics, Laboratory for Manufacturing Systems and Automation (LMS); 2017.
  • Djuric AM, Urbanic R, Rickli J. A framework for collaborative robot (cobot) integration in advanced manufacturing systems. SAE Int J Mater Manuf. 2016;9(2):457–464.
  • Fogarty J, Hudson SE, Atkeson CG, et al. Predicting human interruptibility with sensors. ACM Trans Comput Hum Int (TOCHI). 2005;12(1):119–146.
  • Shravani NK, Rao SB. Introducing robots without creating fear of unemployment and high cost in industries. Int J Eng Technol Sci Res. 2018;5(1):1128–1138.
  • De Santis A. Modelling and control for human-robot interaction: physical and cognitive aspects. 2008 IEEE International Conference on Robotics and Automation. IEEE; 2008.
  • Moulières-Seban T, Bitonneau D, Salotti JM, et al. Human factors issues for the design of a cobotic system. In: Savage-Knepshield P, Chen J, editor. Advances in human factors in robots and unmanned systems. Cham: Springer International Publishing; 2017. p. 375–385.
  • Moulières-Seban T, Salotti JM, Claverie B, et al. Classification of cobotic systems for industrial applications. Ingénierie Cognit. 2018;1(1):1–8.
  • Moulières-Seban T, Salotti JM, Claverie B, et al. Classification of cobotic systems for industrial applications. The 6th Workshop Towards a Framework for Joint Action; 2015 Oct. p. 1–6.
  • Tolós Pons N. Standarization in human robot interaction [PhD thesis]. Universitat Politècnica de Catalunya; 2013.
  • Restrepo SS, Raiola G, Chevalier P, et al. Iterative virtual guides programming for human-robot comanipulation. 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE; 2017. p. 9p.
  • Koch PJ, Van Amstel MK, Debska P, et al. A skill-based robot co-worker for industrial maintenance tasks. Procedia Manuf. 2017;11:83–90.
  • Meziane R, Li P, Otis MJD, et al. Safer hybrid workspace using human-robot interaction while sharing production activities. 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings. IEEE; 2014.
  • Liang YS, Pellier D, Fiorino H, et al. A framework for robot programming in cobotic environments: first user experiments. Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering. ACM; 2017. p. 30–35.
  • Bo H, Mohan DM, Azhar M, et al. Human-robot collaboration for tooling path guidance. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE; 2016. p. 1340–1345.
  • Peshkin MA, Colgate JE, Wannasuphoprasit W, et al. Cobot architecture. IEEE Trans Rob Autom. 2001;17(4):377–390.
  • Gambao E, Hernando M, Surdilovic D. A new generation of collaborative robots for material handling. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 29. Vilnius Gediminas Technical University, Department of Construction Economics & Property; 2012. p. 1.
  • Bernhardt R, Surdilovic D, Katschinski V, et al. Next generation of flexible assembly systems. In: Azevedo A, editor. Innovation in manufacturing networks. Boston, MA: Springer US; 2008. p. 279–288.
  • Bortolini M, Ferrari E, Gamberi M, et al. Assembly system design in the industry 4.0 era: a general framework. IFAC-PapersOnLine. 2017;50(1):5700–5705.
  • She Y, Su HJ, Lai C, et al. Design and prototype of a tunable stiffness arm for safe human-robot interaction. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers; 2016. p. V05BT07A063–V05BT07A063.
  • Ferland F, Reveleau A, Leconte F, et al. Coordination mechanism for integrated design of human-robot interaction scenarios. Paladyn J Behav Robot. 2017;8(1):100–111.
  • Karolak F, Le Scouarnec N, Campana M, et al. Le développement industriel futur de la robotique personnelle et de service en france. 2012. (Tech Rep).
  • Alvarez-de-los Mozos E, Renteria A. Collaborative robots in e-waste management. Procedia Manuf. 2017;11:55–62.
  • Maurice P, Schlehuber P, Padois V, et al. Automatic selection of ergonomie indicators for the design of collaborative robots: a virtual-human in the loop approach. 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE; 2014. p. 801–808.
  • Maurice P, Padois V, Measson Y, et al. Human-oriented design of collaborative robots. Int J Ind Ergon. 2017;57:88–102.
  • Amoretti M, Reggiani M. Architectural paradigms for robotics applications. Adv Eng Inform. 2010;24(1):4–13.
  • Unland R. Chapter 2 – Industrial agents. In: Leitão P, Karnouskos S, editor. Industrial agents. Boston: Morgan Kaufmann; 2015. p. 23–44.
  • Leitão P, Vrba P. Recent developments and future trends of industrial agents. International Conference on Industrial Applications of Holonic and Multi-Agent Systems. Springer; 2011. p. 15–28.
  • Leitão P, Inden U, Rückemann CP. Parallelising multi-agent systems for high performance computing. Third International Conference on Advanced Communications and Computation (INFOCOMP13). Vol. 6. IARIA; 2013. p. 1.
  • Leitão P, Mařík V, Vrba P. Past, present, and future of industrial agent applications. IEEE Trans Ind Inform. 2013;9(4):2360–2372.
  • Leitão P. Agent-based distributed manufacturing control: a state-of-the-art survey. Eng Appl Artif Intell. 2009;22(7):979–991.
  • Feng C, Xiao Y, Willette A, et al. Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites. Autom Constr. 2015;59:128–138.
  • Fabrizio F, De Luca A. Real-time computation of distance to dynamic obstacles with multiple depth sensors. IEEE Robot Autom Lett. 2016;2(1):56–63.
  • Magyar G, Cadrik T, Vircikova M, et al. Towards adaptive cloud-based platform for robotic assistants in education. 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE; 2014. p. 285–289.
  • Magyar G, Vircikova M. Proposal of a cloud-based agent for social human-robot interaction that learns from the human experimenters. 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES). IEEE; 2015. p. 107–111.
  • Vick A, Surdilovic D, Dräger AK, et al. The industrial robot as intelligent tool carrier for human-robot interactive artwork. 2014 Ro-Man: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE; 2014. p. 880–885.
  • Vick A, Vonásek V, Penicka R, et al. Robot control as a service-towards cloud-based motion planning and control for industrial robots. RoMoCo. 2015;15:33–39.
  • Stenmark M, Malec J, Nilsson K, et al. On distributed knowledge bases for robotized small-batch assembly. IEEE Trans Autom Sci Eng. 2015;12(2):519–528.
  • De Benedictis C, Franco W, Maffiodo D, et al. Control of force impulse in human-machine impact. International Conference on Robotics in Alpe-Adria Danube Region. Springer; 2017. p. 956–964.
  • Gaz C, Flacco F, De Luca A. Identifying the dynamic model used by the KUKA LWR: a reverse engineering approach. 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2014. p. 1386–1392.
  • Rozo L, Bruno D, Calinon S, et al. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 1024–1030.
  • Navarro B, Cherubini A, Fonte A, et al. An iso10218-compliant adaptive damping controller for safe physical human-robot interaction. 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2016. p. 3043–3048.
  • International Organization for Standardization S Geneva. ISO 10218-2:2011 robots and robotic devices – safety requirements for industrial robots – part 2: robot systems and integration. 2016. (Tech Rep).
  • Waurzyniak P. Fast, lightweight robots help factories go faster. Manuf Eng. 2015;154(3):55–64.
  • Robla-Gómez S, Becerra VM, Llata JR, et al. Working together: a review on safe human-robot collaboration in industrial environments. IEEE Access. 2017;5:26754–26773.
  • Vasic M, Billard A. Safety issues in human-robot interactions. 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2013. p. 197–204.
  • Guiochet J. Hazard analysis of human–robot interactions with hazop–uml. Saf Sci. 2016;84:225–237.
  • De Santis A, Siciliano B. Safety issues for human-robot cooperation in manufacturing systems. Tools and Perspectives in Virtual Manufacturing. VRTest 2008; 2008.
  • Morato C, Kaipa KN, Zhao B, et al. Toward safe human robot collaboration by using multiple kinects based real-time human tracking. J Comput Inf Sci Eng. 2014;14(1):011006.
  • Tan JTC, Duan F, Zhang Y, et al. Safety design and development of human-robot collaboration in cellular manufacturing. 2009 IEEE International Conference on Automation Science and Engineering. CASE 2009. IEEE; 2009. p. 537–542.
  • Bobka P, Germann T, Heyn JK, et al. Simulation platform to investigate safe operation of human-robot collaboration systems. Procedia CIRP. 2016;44:187–192.
  • Courreges F, Laribi MA, Arsicault M, et al. Designing a biomimetic model of non-linear elastic safety mechanism for collaborative robots. 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE; 2016. p. 231–236.
  • She Y, Su HJ, Hurd CJ. Shape optimization of 2D compliant links for design of inherently safe robots. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers; 2015. p. V05BT08A004–V05BT08A004.
  • Meng D, Song S, Wang J. Design and modeling of a compliant link for inherently safe corobots. J Mech Robot. 2017;2017:1–14.
  • Weitschat R, Vogel J, Lantermann S, et al. End-effector airbags to accelerate human-robot collaboration. 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2017. p. 2279–2284.
  • Vanderborght B, Albu-Schäffer A, Bicchi A, et al. Variable impedance actuators: a review. Rob Auton Syst. 2013;61(12):1601–1614.
  • Tagliamonte NL, Sergi F, Accoto D, et al. Double actuation architectures for rendering variable impedance in compliant robots: a review. Mechatronics. 2012;22(8):1187–1203.
  • Walker DS, Thoma DJ, Niemeyer G. Variable impedance magnetorheological clutch actuator and telerobotic implementation. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009. IEEE; 2009. p. 2885–2891.
  • Wolf S, Hirzinger G. A new variable stiffness design: matching requirements of the next robot generation. 2008 IEEE International Conference on Robotics and Automation. ICRA 2008. IEEE; 2008. p. 1741–1746.
  • Groothuis S, Carloni R, Stramigioli S. A novel variable stiffness mechanism capable of an infinite stiffness range and unlimited decoupled output motion. Actuators. Vol. 3. Multidisciplinary Digital Publishing Institute; 2014. p. 107–123.
  • Ayoubi Y, Laribi MA, Courrèges F, et al. A complete methodology to design a safety mechanism for prismatic joint implementation. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2016. p. 304–309.
  • Fenucci A, Indri M, Romanelli F. A real time distributed approach to collision avoidance for industrial manipulators. 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE; 2014. p. 1–8.
  • Flacco F, De Luca A. Multiple depth/presence sensors: integration and optimal placement for human/robot coexistence. 2010 IEEE International Conference on Robotics and Automation. IEEE; 2010. p. 3916–3923.
  • Flacco F, Kröger T, De Luca A, et al. A depth space approach to human-robot collision avoidance. 2012 IEEE International Conference on Robotics and Automation. IEEE; 2012. p. 338–345.
  • Najmaei N, Kermani MR. Prediction-based reactive control strategy for human-robot interactions. 2010 IEEE International Conference on Robotics and Automation. IEEE; 2010. p. 3434–3439.
  • Antonelli G, Chiaverini S, Perna V, et al. A modular and task-oriented architecture for open control system: the evolution of c5g open towards high level programming. IEEE 2010 International Conference on Robotics and Automation, Workshop on Innovative Robot Control Architectures for Demanding (Research) Applications, Anchorage, Alaska. 2010.
  • Quigley M, Conley K, Gerkey B, et al. Ros: an open-source robot operating system. ICRA Workshop on Open Source Software. Vol. 3; Kobe, Japan; 2009. p. 5.
  • Rhoden B, Klues K, Waterman A, et al. ROS: a scalable operating system for parallel applications on many-core architectures. Research Supported by Microsoft Award# 024263 and Intel Award# 024894. 2013.
  • Indri M, Trapani S, Lazzero I. A general procedure for collision detection between an industrial robot and the environment. 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE; 2015. p. 1–8.
  • Bøgh S, Hvilshøj M, Kristiansen M, et al. Identifying and evaluating suitable tasks for autonomous industrial mobile manipulators (AIMM). Int J Adv Manuf Technol. 2012;61(5–8):713–726.
  • Mantegazza P. Diapm RTAI for linux: whys, whats and hows. Real-Time Linux Workshop, Conference; 1999 Dec.
  • Balkan T, Ozgoren MK, Arikan MS. Structure based classification and kinematic analysis of six-joint industrial robotic manipulators. In: Cubero S, editor. Industrial robotics: theory, modelling and control, InTech Europe, Croatia. Mammendorf, Germany: Pro Literatur Verlag/Linz, Austria: ARS; 2006.
  • Ibari B, Bouzgou K, Ahmed-Foitih Z, et al. An application of augmented reality (AR) in the manipulation of fanuc 200ic robot. 2015 Fifth International Conference on Innovative Computing Technology (INTECH). IEEE; 2015. p. 56–60.
  • Suárez-Ruiz F, Pham QC. A framework for fine robotic assembly. Preprint 2015. arXiv:150904806.
  • Avanzini GB, Ceriani NM, Zanchettin AM, et al. Safety control of industrial robots based on a distributed distance sensor. IEEE Trans Control Syst Technol. 2014;22(6):2127–2140.
  • Ragaglia M, Bascetta L, Rocco P, et al. Integration of perception, control and injury knowledge for safe human-robot interaction. 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2014. p. 1196–1202.
  • Kevin BK. White paper safe collaboration with abb robots, electronic position switch and safemove. ABB, 2008. 2008.
  • Shin D, Sardellitti I, Park YL, et al. Design and control of a bio-inspired human-friendly robot. Int J Rob Res. 2010;29(5):571–584.
  • Mumm J, Mutlu B. Human-robot proxemics: physical and psychological distancing in human-robot interaction. Proceedings of the 6th International Conference on Human-Robot Interaction. ACM; 2011. p. 331–338.
  • Ogorodnikova O. How safe the human-robot coexistence is? Theoretical presentation. Acta Polytech Hung. 2009;6(4):51–74.
  • Lasota PA, Fong T, Shah JA, et al. A survey of methods for safe human-robot interaction. Found Trends® Robot. 2017;5(4):261–349.
  • Quarta D, Pogliani M, Polino M, et al. An experimental security analysis of an industrial robot controller. 2017 38th IEEE Symposium on Security and Privacy (SP). IEEE; 2017. p. 268–286.
  • Haddadin S, Albu-Schaffer A, Hirzinger G. The role of the robot mass and velocity in physical human-robot interaction-part I: non-constrained blunt impacts. 2008 IEEE International Conference on Robotics and Automation. ICRA 2008. IEEE; 2008. p. 1331–1338.
  • Haddadin S, Haddadin S, Khoury A, et al. A truly safely moving robot has to know what injury it may cause. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2012. p. 5406–5413.
  • Matthias B, Kock S, Jerregard H, et al. Safety of collaborative industrial robots: certification possibilities for a collaborative assembly robot concept. 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM). IEEE; 2011. p. 1–6.
  • Tan Y, Vuran MC, Goddard S. Spatio-temporal event model for cyber-physical systems. 2009 29th IEEE International Conference on Distributed Computing Systems Workshops. ICDCS Workshops' 09. IEEE; 2009. p. 44–50.
  • Vladareanu V, Dumitrache I, Vladareanu L, et al. Versatile intelligent portable robot control platform based on cyber physical systems principles. Stud Inf Control. 2015;24(4):409–418.
  • Lee EA, Seshia SA. Introduction to embedded systems: a cyber-physical systems approach. Cambridge, MA: Mit Press; 2016.
  • Hentout A, Hamdania A, Kachouane H, et al. Multi-agent control architecture for RFID cyber-physical robotic systems: initial validation of tagged objects detection and identification using player/stage. 2016 Global Information Infrastructure and Networking Symposium (GIIS). IEEE; 2016. p. 1–6.
  • Korthals T, Krause T, Rückert U. Evidence grid based information fusion for semantic classifiers in dynamic sensor networks. In: Niggemann O, Beyerer J, Machine learning for cyber physical systems. Berlin: Springer; 2016. p. 9–14.
  • Perez JB, Arrieta AG, Hernández Encinas A, et al. Industrial cyber-physical systems in textile engineering. International Joint Conference SOCO'16-CISIS'16-ICEUTE'16. Springer; 2016. p. 126–135.
  • Khalid A, Kirisci P, Ghrairi Z, et al. Safety requirements in collaborative human–robot cyber-physical system. In: Freitag M, Kotzab H, Pannek, J, editor. Dynamics in logistics. Cham: Springer International Publishing; 2017. p. 41–51.
  • Vogel C, Fritzsche M, Elkmann N. Safe human-robot cooperation with high-payload robots in industrial applications. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE; 2016. p. 529–530.
  • Bogue R. Europe continues to lead the way in the collaborative robot business. Ind Robot Int J. 2016;43(1):6–11.
  • Schmidt B, Wang L. Contact-less and programming-less human-robot collaboration. Procedia CIRP. 2013;7:545–550.
  • Backman B, et al. Simulating human-robot collaboration: -an example from cab assembly. 2015.
  • Charoenseang S, Tonggoed T. Human–robot collaboration with augmented reality. International Conference on Human-Computer Interaction. Springer; 2011. p. 93–97.
  • Adamovich SV, Fluet GG, Tunik E, et al. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(1):29–44.
  • Hernoux F, Nyiri E, Gibaru O. Virtual reality for improving safety and collaborative control of industrial robots. Proceedings of the 2015 Virtual Reality International Conference. ACM; 2015. p. 26.
  • Makris S, Karagiannis P, Koukas S, et al. Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann Manuf Technol. 2016;65(1):61–64.
  • Michalos G, Makris S, Tsarouchi P, et al. Design considerations for safe human-robot collaborative workplaces. Procedia CIRP. 2015;37:248–253.
  • Zhou F, Duh HBL, Billinghurst M. Trends in augmented reality tracking, interaction and display: a review of ten years of ismar. Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society; 2008. p. 193–202.
  • Paelke V. Augmented reality in the smart factory: supporting workers in an industry 4.0. environment. Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA). IEEE; 2014. p. 1–4.
  • Ding H, Reißig G, Wijaya K, et al. Human arm motion modeling and long-term prediction for safe and efficient human-robot-interaction. 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2011. p. 5875–5880.
  • Vasquez D, Fraichard T, Laugier C. Growing hidden Markov models: an incremental tool for learning and predicting human and vehicle motion. Int J Rob Res. 2009;28(11–12):1486–1506.
  • Cherubini A. Multimodal sensor-based control for human-robot interaction [PhD thesis]. Université de Montpellier; 2016.
  • Hiatt LM, Harrison AM, Trafton JG. Accommodating human variability in human-robot teams through theory of mind. IJCAI Proceedings-International Joint Conference on Artificial Intelligence. Vol. 22. 2011. p. 2066.
  • Nikolaidis S, Ramakrishnan R, Gu K, et al. Efficient model learning from joint-action demonstrations for human-robot collaborative tasks. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction. ACM; 2015. p. 189–196.
  • Huang CM, Mutlu B. Anticipatory robot control for efficient human-robot collaboration. The Eleventh ACM/IEEE International Conference on Human Robot Interaction. IEEE Press; 2016. p. 83–90.
  • Milliez G, Lallement R, Fiore M, et al. Using human knowledge awareness to adapt collaborative plan generation, explanation and monitoring. The Eleventh ACM/IEEE International Conference on Human Robot Interaction. IEEE Press; 2016. p. 43–50.
  • Görür OC, Rosman BS, Hoffman G, et al. Toward integrating theory of mind into adaptive decision-making of social robots to understand human intention. Workshop on Intentions in HRI at ACM/IEEE International Conference on Human-Robot Interaction (HRI'17). IEEE; 2017.
  • Corrales J, Gomez GG, Torres F, et al. Cooperative tasks between humans and robots in industrial environments. Int J Adv Robot Syst. 2012;9(3):94.
  • Bascetta L, Ferretti G, Rocco P, et al. Towards safe human-robot interaction in robotic cells: an approach based on visual tracking and intention estimation. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2011. p. 2971–2978.
  • Li X, Pan Y, Chen G, et al. Adaptive human–robot interaction control for robots driven by series elastic actuators. IEEE Trans Robot. 2017;33(1):169–182.
  • Ragaglia M, Zanchettin AM, Rocco P. Safety-aware trajectory scaling for human-robot collaboration with prediction of human occupancy. 2015 International Conference on Advanced Robotics (ICAR). IEEE; 2015. p. 85–90.
  • Zanchettin AM, Rocco P. Path-consistent safety in mixed human-robot collaborative manufacturing environments. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2013. p. 1131–1136.
  • Dunjó J, Fthenakis V, Vílchez JA, et al. Hazard and operability (hazop) analysis: a literature review. J Hazard Mater. 2010;173(1–3):19–32.
  • Mohan RE, Wijesoma WS, Acosta Calderon CA, et al. False alarm metrics for human–robot interactions in service robots. Adv Robot. 2010;24(13):1841–1859.
  • National institute of standards and technology. 2017. Available from: https://www.nist.gov/
  • Marvel JA. Sensors for safe, collaborative robots in smart manufacturing. 2017 IEEE Sensors. IEEE; 2017. p. 1–3.
  • Bdiwi M, Pfeifer M, Sterzing A. A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Ann. 2017;66(1):453–456.
  • Oren Y, Bechar A, Edan Y. Performance analysis of a human–robot collaborative target recognition system. Robotica. 2012;30(5):813–826.
  • Tsai CS, Hu JS, Tomizuka M. Ensuring safety in human-robot coexistence environment. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2014. p. 4191–4196.
  • Lacevic B, Rocco P. Kinetostatic danger field-a novel safety assessment for human-robot interaction. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2010. p. 2169–2174.
  • Polverini MP, Zanchettin AM, Rocco P. Real-time collision avoidance in human-robot interaction based on kinetostatic safety field. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2014. p. 4136–4141.
  • Lacevic B. Safe motion planning and control for robotic manipulators-a kinematic approach [PhD thesis, PhD dissertation]. Dipto. Elettron. Inform. e Bioing., Politecnico di; 2011.
  • ISO10218:1. 2017. Available from: https://www.iso.org/standard/51330.html
  • ISO10218:2. 2017. Available from: https://www.iso.org/standard/41571.html
  • Fast-Berglund Å, Palmkvist F, Nyqvist P, et al. Evaluating cobots for final assembly. Procedia CIRP. 2016;44:175–180.
  • Association RI, et al. ANSI/RIA r15. 06: 2012 safety requirements for industrial robots and robot systems. Ann Arbor Robot Ind Assoc. 2012.
  • Harper C, Virk G. Towards the development of international safety standards for human robot interaction. Int J Soc Robot. 2010;2(3):229–234.
  • Fryman J, Matthias B. Safety of industrial robots: from conventional to collaborative applications. 7th German Conference on Robotics. Proceedings of ROBOTIK 2012. VDE; 2012. p. 1–5.
  • Maurtua I, Ibarguren A, Kildal J, et al. Human–robot collaboration in industrial applications: safety, interaction and trust. Int J Adv Robot Syst. 2017;14(4):1729881417716010.
  • Bragagnolo H. Industry 4.0: from theory to practice. An empirical analysis of the factory of the future. 2017.
  • El Makrini I, Merckaert K, Lefeber D, et al. Design of a collaborative architecture for human-robot assembly tasks. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2017. p. 1624–1629.
  • Coupeté E, Moutarde F, Manitsaris S. A user-adaptive gesture recognition system applied to human-robot collaboration in factories. Proceedings of the 3rd International Symposium on Movement and Computing. ACM; 2016. p. 12.
  • Akkaladevi SC, Heindl C. Action recognition for human robot interaction in industrial applications. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). IEEE; 2015. p. 94–99.
  • Ramirez-Amaro K, Beetz M, Cheng G. Understanding the intention of human activities through semantic perception: observation, understanding and execution on a humanoid robot. Adv Robot. 2015;29(5):345–362.
  • Ramirez-Amaro K, Dean-Leon E, Cheng G. Robust semantic representations for inferring human co-manipulation activities even with different demonstration styles. 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). IEEE; 2015. p. 1141–1146.
  • Barattini P, Morand C, Robertson NM. A proposed gesture set for the control of industrial collaborative robots. 2012 IEEE Ro-Man. IEEE; 2012. p. 132–137.
  • Peppoloni L, Brizzi F, Avizzano CA, et al. Immersive ros-integrated framework for robot teleoperation. 2015 IEEE Symposium on 3D User Interfaces (3DUI). IEEE; 2015. p. 177–178.
  • Tsarouchi P, Matthaiakis AS, Makris S, et al. On a human-robot collaboration in an assembly cell. Int J Comput Integr Manuf. 2017;30(6):580–589.
  • Potter LE, Araullo J, Carter L. The leap motion controller: a view on sign language. Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration. ACM; 2013. p. 175–178.
  • Hernoux F, Béarée R, Gibaru O. Investigation of dynamic 3D hand motion reproduction by a robot using a leap motion. Proceedings of the 2015 Virtual Reality International Conference. ACM; 2015. p. 24.
  • Wu J, Konrad J, Ishwar P. Dynamic time warping for gesture-based user identification and authentication with kinect. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE; 2013. p. 2371–2375.
  • Loper MM, Koenig NP, Chernova SH, et al. Mobile human-robot teaming with environmental tolerance. 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE; 2009. p. 157–163.
  • Correa M, Ruiz-Del-Solar J, Bernuy F. Face recognition for human-robot interaction applications: a comparative study. In: Iocchi L, Matsubara H, Weitzenfeld A, Zhou C, editor. RoboCup 2008: Robot Soccer World Cup XII. Berlin: Springer; 2008. p. 473–484.
  • Bdiwi M. Integrated sensors system for human safety during cooperating with industrial robots for handing-over and assembling tasks. Procedia CIRP. 2014;23:65–70.
  • Wiedemeyer T. Iai kinect2. Institute for artificial intelligence, University Bremen; 2014–2015. Available from: https://githubcom/code-iai/iai_kinect2.
  • Ziafati P, Lera F, Costa A, et al. Procrob architecture for personalized social robotics. R4L 2017. HRI'17; 2017.
  • Niculescu AI, Banchs RE, Li H. Why industrial robots should become more social. International Conference on Social Robotics. Springer; 2014. p. 276–278.
  • Stenmark M, Nugues P. Natural language programming of industrial robots. 2013 44th International Symposium on Robotics (ISR). IEEE; 2013. p. 1–5.
  • Bauzano E, Estebanez B, Garcia-Morales I, et al. Collaborative human–robot system for hals suture procedures. IEEE Syst J. 2016;10(3):957–966.
  • Morvan J. Understanding and communicating intentions in human-robot interaction. 2015.
  • Kshirsagar A, Chen J. Toward bridging the gap between social robots and industrial robots. 2016.
  • Fischer K, Jensen LC, Kirstein F, et al. The effects of social gaze in human-robot collaborative assembly. International Conference on Social Robotics. Springer; 2015. p. 204–213.
  • Bee N, André E, Tober S. Breaking the ice in human-agent communication: eye-gaze based initiation of contact with an embodied conversational agent. International Workshop on Intelligent Virtual Agents. Springer; 2009. p. 229–242.
  • Elprama B, El Makrini I, Jacobs A. Acceptance of collaborative robots by factory workers: a pilot study on the importance of social cues of anthropomorphic robots. International Symposium on Robot and Human Interactive Communication; 2016.
  • Elprama SA, Jewell CI, Jacobs A, et al. Attitudes of factory workers towards industrial and collaborative robots. Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. ACM; 2017. p. 113–114.
  • Fang H, Ong SK, Nee AYC. Robot programming using augmented reality. 2009 International Conference on CyberWorlds. CW'09. IEEE; 2009. p. 13–20.
  • Steinmetz F, Weitschat R. Skill parametrization approaches and skill architecture for human-robot interaction. 2016 IEEE International Conference on Automation Science and Engineering (CASE). IEEE; 2016. p. 280–285.
  • Hein B, Hensel M, Worn H. Intuitive and model-based on-line programming of industrial robots: a modular on-line programming environment. 2008 IEEE International Conference on Robotics and Automation. ICRA 2008. IEEE; 2008. p. 3952–3957.
  • Lambrecht J, Kleinsorge M, Rosenstrauch M, et al. Spatial programming for industrial robots through task demonstration. Int J Adv Robot Syst. 2013;10(5):254.
  • Tykal M, Montebelli A, Kyrki V. Incrementally assisted kinesthetic teaching for programming by demonstration. The Eleventh ACM/IEEE International Conference on Human Robot Interaction. IEEE Press; 2016. p. 205–212.
  • Zhang J, Wang Y, Xiong R. Industrial robot programming by demonstration. 2016 International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE; 2016. p. 300–305.
  • Tsarouchi P, Makris S, Chryssolouris G. Human–robot interaction review and challenges on task planning and programming. Int J Comput Integr Manuf. 2016;29(8):916–931.
  • Musat FC, Mihu FC. Collaborative robots and knowledge management – a short review. ACTA Univ Cibiniensis. 2017;69(1):143–147.
  • Balakirsky S, Kootbally Z, Schlenoff C, et al. An industrial robotic knowledge representation for kit building applications. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2012. p. 1365–1370.
  • Roveda L. Model based compliance shaping control of light-weight manipulator in hard-contact industrial applications [PhD thesis]. Italy: 2015.
  • Ramos L. Semantic web for manufacturing, trends and open issues: toward a state of the art. Comput Ind Eng. 2015;90:444–460.
  • Schou C, Hansson M, Madsen O. Assisted hardware selection for industrial collaborative robots. Procedia Manuf. 2017;11:174–184.
  • Guerin KR, Lea C, Paxton C, et al. A framework for end-user instruction of a robot assistant for manufacturing. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 6167–6174.
  • Colledanchise M, Ögren P. How behavior trees modularize robustness and safety in hybrid systems. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE; 2014. p. 1482–1488.
  • Paxton C, Hundt A, Jonathan F, et al. Costar: instructing collaborative robots with behavior trees and vision. 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2017. p. 564–571.
  • Pichler A, Akkaladevi SC, Ikeda M, et al. Towards shared autonomy for robotic tasks in manufacturing. Procedia Manuf. 2017;11:72–82.
  • Mocan B, Fulea M, Brad S. Designing a multimodal human-robot interaction interface for an industrial robot. In: Borangiu T, editor. Advances in robot design and intelligent control. Cham: Springer International Publishing; 2016. p. 255–263.
  • Maoudj A, Bouzouia B, Hentout A, et al. Distributed multi-agent scheduling and control system for robotic flexible assembly cells. J Intell Manuf. 2019;30(4):1629–1644.
  • Gombolay MC, Shah JA. Challenges in collaborative scheduling of human-robot teams. Artificial Intelligence for Human-Robot Interaction: Papers From the 2014 AAAI Fall Symposium. Google Scholar; 2014.
  • Gombolay MC, Huang C, Shah JA. Coordination of human-robot teaming with human task preferences. AAAI Fall Symposium Series on AI-HRI. Vol. 11. 2015.
  • Chen F, Sekiyama K, Sasaki H, et al. Assembly strategy modeling and selection for human and robot coordinated cell assembly. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2011. p. 4670–4675.
  • Tan JTC, Duan F, Kato R, et al. Collaboration planning by task analysis in human-robot collaborative manufacturing system. In: Ernest H, editor. Advances in robot manipulators. Rijeka, Croatia: IntechOpen; 2010. p. 113–132.
  • Tan JTC, Duan F, Zhang Y, et al. Task decomposition of cell production assembly operation for man-machine collaboration by HTA. 2008 IEEE International Conference on Automation and Logistics. IEEE; 2008. p. 1066–1071.
  • Takata S, Hirano T. Human and robot allocation method for hybrid assembly systems. CIRP Ann. 2011;60(1):9–12.
  • Akan B, AAmeri E, Çürüklü B. Augmented reality-based industrial robot control. Proceedings of SIGRAD 2011. Evaluations of Graphics and Visualization Efficiency; Usefulness; Accessibility; Usability; 2011 Nov 17–18; KTH; Stockholm; Sweden. Linköping University Electronic Press; 2011. p. 113–114; 065.
  • Nee AY, Ong S, Chryssolouris G, et al. Augmented reality applications in design and manufacturing. CIRP Ann Manuf Technol. 2012;61(2):657–679.
  • Moniz AB, Krings BJ. Robots working with humans or humans working with robots? Searching for social dimensions in new human-robot interaction in industry. Societies. 2016;6(3):23.
  • Makris S, Pintzos G, Rentzos L, et al. Assembly support using ar technology based on automatic sequence generation. CIRP Ann. 2013;62(1):9–12.
  • Michalos G, Karagiannis P, Makris S, et al. Augmented reality (ar) applications for supporting human-robot interactive cooperation. Procedia CIRP. 2016;41:370–375.
  • Sääski J, Salonen T, Hakkarainen M, et al. Integration of design and assembly using augmented reality. International Precision Assembly Seminar. Springer; 2008. p. 395–404.
  • Mourtzis D, Doukas M. A web-based virtual and augmented reality platform for supporting the design of personalised products. CMS (2012), 45th CIRP Conference on Manufacturing Systems, Athens, Greece; 2012. p. 234–241.
  • Matsas E, Vosniakos GC. Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int J Interact Des Manuf (IJIDeM). 2017;11(2):139–153.
  • Di Gironimo G, Patalano S, Tarallo A. Innovative assembly process for modular train and feasibility analysis in virtual environment. Int J Interact Des Manuf (IJIDeM). 2009;3(2):93–101.
  • Sauppé A, Mutlu B. The social impact of a robot co-worker in industrial settings. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM; 2015. p. 3613–3622.
  • Glasauer S, Huber M, Basili P, et al. Interacting in time and space: investigating human-human and human-robot joint action. 2010 IEEE Ro-Man. IEEE; 2010. p. 252–257.
  • Huber M, Knoll A, Brandt T, et al. When to assist? Modelling human behaviour for hybrid assembly systems. 2010 41st International Symposium on Robotics (ISR) and 2010 6th German Conference on Robotics (Robotik). VDE; 2010. p. 1–6.
  • Yagoda RE, Gillan DJ. You want me to trust a robot? The development of a human–robot interaction trust scale. Int J Soc Robot. 2012;4(3):235–248.
  • Charalambous G, Fletcher S, Webb P. Human-automation collaboration in manufacturing. Contemporary ergonomics and human factors 2013. Vol. 59. Routledge in association with GSE Research; 2013. p. 59–66.
  • Yagoda R. You want me to use that robot? Identifying underlying factors affecting robot use [PhD thesis]. Raleigh, North Carolina, USA; 2013.
  • Ogorodnikova O. Human weaknesses and strengths in collaboration with robots. Period Polytech Mech Eng. 2008;52(1):25–33.
  • Dragan AD, Lee KC, Srinivasa SS. Legibility and predictability of robot motion. Proceedings of the 8th ACM/IEEE International Conference on Human-robot Interaction. IEEE Press; 2013. p. 301–308.
  • Hentout A, Messous MA, Bouzouia B. Fault-tolerant multi-agent control architecture for autonomous mobile manipulators: simulation results. Comput Elect Eng. 2015;43:238–256.
  • Caccavale F, Villani L. Fault diagnosis and fault tolerance for mechatronic systems: recent advances. In: Caccavale F, Villani L, editor. Springer Tracts in Advanced Robotics, Proceedings of a Workshop at the 2002 IEEE International Symposium on Intelligent Control, Vol. 1. Berlin: Springer-Verlag; 2002.
  • Kalisch M. Supervised context classification methods for an industrial machinery. 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE; 2015. p. 1667–1672.
  • De Santis A, Siciliano B, De Luca A, et al. An atlas of physical human–robot interaction. Mech Mach Theory. 2008;43(3):253–270.
  • Crestani D, Godary-Dejean K, Lapierre L. Enhancing fault tolerance of autonomous mobile robots. Rob Auton Syst. 2015;68:140–155.
  • Dhillon B, Fashandi A, Liu K. Robot systems reliability and safety: a review. J Qual Maint Eng. 2002;8(3):170–212.
  • Bicchi A, Bavaro M, Boccadamo G, et al. Physical human-robot interaction: dependability, safety, and performance. 2008 10th IEEE International Workshop on Advanced Motion Control. AMC'08. IEEE; 2008. p. 9–14.
  • Pervez A, Ryu J. Safe physical human robot interaction-past, present and future. J Mech Sci Technol. 2008;22(3):469.
  • Krüger J, Surdilovic D. Robust control of force-coupled human–robot-interaction in assembly processes. CIRP Ann Manuf Technol. 2008;57(1):41–44.
  • Jacob RJ, Girouard A, Hirshfield LM, et al. Reality-based interaction: a framework for post-wimp interfaces. Proceedings of the SIGCHI conference on Human factors in computing systems. ACM; 2008. p. 201–210.
  • Gao D, Wampler CW. Head injury criterion. IEEE Robot Autom Mag. 2009;16(4):71–74.
  • Zoghbi S, Croft E, Kulić D, et al. Evaluation of affective state estimations using an on-line reporting device during human-robot interactions. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009. IEEE; 2009. p. 3742–3749.
  • Ding H, Kain S, Schiller F, et al. Increasing reliability of intelligent manufacturing systems by adaptive optimization and safety supervision. IFAC Proc Vol. 2009;42(8):1533–1538.
  • Tan JTC, Duan F, Zhang Y, et al. Human-robot collaboration in cellular manufacturing: design and development. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009. IEEE; 2009. p. 29–34.
  • Hoffmann A, Angerer A, Ortmeier F, et al. Hiding real-time: a new approach for the software development of industrial robots. IROS; 2009. p. 2108–2113.
  • Zhang B, Wang J, Fuhlbrigge T. A review of the commercial brain-computer interface technology from perspective of industrial robotics. 2010 IEEE International Conference on Automation and logistics (ICAL). IEEE; 2010. p. 379–384.
  • International Organization for Standardization I. Safety of machinery – general principles for design – risk assessment and risk reduction. 2010.
  • Surdilovic D, Yakut Y, Nguyen TM, et al. Compliance control with dual-arm humanoid robots: design, planning and programming. 2010 10th IEEE-RAS International Conference on Humanoid Robots. IEEE; 2010. p. 275–281.
  • Esfahani ET, Sundararajan V. Using brain–computer interfaces to detect human satisfaction in human–robot interaction. Int J Human Robot. 2011;8(01):87–101.
  • Lim S, Chung L, Han O, et al. An interactive cyber-physical system (CPS) for people with disability and frail elderly people. Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication. ACM; 2011. p. 113.
  • Lamy X. Conception d'une interface de pilotage d'un cobot [PhD thesis]. France: 2011.
  • Papakostas N, Michalos G, Makris S, et al. Industrial applications with cooperating robots for the flexible assembly. Int J Comput Integr Manuf. 2011;24(7):650–660.
  • Sghaier A, Charpentier P. La problématique de l'utilisation des robots industriels en matière de sécurité. Annales des Mines-Réalités industrielles. 1. Eska; 2012. p. 24–31.
  • Haddadin S, Haddadin S, Khoury A, et al. On making robots understand safety: embedding injury knowledge into control. Int J Rob Res. 2012;31(13):1578–1602.
  • Stenmark M, Malec J. A helping hand: industrial robotics, knowledge and user-oriented services. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; Tokyo, Japan. 2013. p. 3–7.
  • Daniel B, Thomessen T, Korondi P. Simplified human-robot interaction: modeling and evaluation. Model Identif Control. 2013;34(4):199–211.
  • Hentout A, Benbouali M, Akli I, et al. A telerobotic human/robot interface for mobile manipulators: a study of human operator performance. 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE; 2013. p. 641–646.
  • Garber L. Robot OS: a new day for robot design. Computer. 2013;12:16–20.
  • Dobra A. General classification of robots. size criteria. 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). IEEE; 2014. p. 1–6.
  • Thompson JL. Redesigning the human-robot interface: intuitive teleoperation of anthropomorphic robots [PhD thesis]. 2014.
  • Augustsson S, Olsson J, Christiernin LG, et al. How to transfer information between collaborating human operators and industrial robots in an assembly. Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational. ACM; 2014. p. 286–294.
  • Lasota PA, Rossano GF, Shah JA. Toward safe close-proximity human-robot interaction with standard industrial robots. 2014 IEEE International Conference on Automation Science and Engineering (CASE). IEEE; 2014. p. 339–344.
  • Knight W. How human-robot teamwork will upend manufacturing. 2014.
  • Michalos G, Makris S, Spiliotopoulos J, et al. Robo-partner: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Procedia CIRP. 2014;23:71–76.
  • Masinga P, Campbell H, Trimble J. A framework for human collaborative robots, operations in South African automotive industry. 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE; 2015. p. 1494–1497.
  • Maurice P. Virtual ergonomics for the design of collaborative robots [PhD thesis]. Université Pierre et Marie Curie-Paris VI; 2015.
  • Brossog M, Bornschlegl M, Franke J. Reducing the energy consumption of industrial robots in manufacturing systems. Int J Adv Manuf Technol. 2015;78(5–8):1315–1328.
  • Massa D, Callegari M, Cristalli C. Manual guidance for industrial robot programming. Ind Robot Int J. 2015;42(5):457–465.
  • Sbanca MP, Mogan GL. Cooperative assembly using two industrial robots. In: Borangiu T, editor. Advances in robot design and intelligent control. Cham: Springer International Publishing; 2016. p. 47–57.
  • Bloss R. Collaborative robots are rapidly providing major improvements in productivity, safety, programing ease, portability and cost while addressing many new applications. Ind Robot Int J. 2016;43(5):463–468.
  • Tang G. The development of a human-robot interface for industrial collaborative system [PhD thesis]. School of Engineering, Cranfield University; 2016.
  • Bauer W, Bender M, Braun M, et al. Lightweight robots in manual assembly-best to start simply. Stuttgart: Frauenhofer-Institut für Arbeitswirtschaft und Organisation IAO; 2016.
  • Shneiderman B, Plaisant C, Cohen M, et al. Designing the user interface: strategies for effective human-computer interaction. 6th ed. Pearson; 2016.
  • Hentout A, Maoudj A, Bouzouia B. A survey of development frameworks for robotics. 2016 8th International Conference on Modelling, Identification and Control (ICMIC). IEEE; 2016. p. 67–72.
  • Khalid A, Kirisci P, Ghrairi Z, et al. A methodology to develop collaborative robotic cyber-physical systems for production environments. Logist Res. 2016;9(1):23.
  • Correai Marques JM. A point-and-command interface for grasping unknown objects with robotic manipulators [PhD thesis]. Italy: 2017.
  • Hussein A, Gaber MM, Elyan E, et al. Imitation learning: a survey of learning methods. ACM Comput Surv (CSUR). 2017;50(2):21.
  • Martinez C, Barrero N, Hernandez W, et al. Setup of the yaskawa sda10f robot for industrial applications, using ros-industrial. Advances in automation and robotics research in Latin America. Springer; 2017. p. 186–203.
  • Robot operating system. 2017. Available from: http://www.ros.org
  • Unified modeling language. 2017. Available from: http://www.uml.org/
  • Artoolkit. 2017. Available from: https://github.com/artoolkit
  • Open graphics library. 2017. Available from: https://www.opengl.org/
  • ISO/TS 15066:2016. Robots and robotic devices – collaborative robots. 2016. Available from: https://www.iso.org/standard/62996.html
  • Long P, Chevallereau C, Chablat D, et al. An industrial security system for human-robot coexistence. Ind Robot Int J. 2018;45(2):220–226.
  • Hirzinger G, Albu-Schaffer A, Hahnle M, et al. On a new generation of torque controlled light-weight robots. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). Vol. 4. IEEE; 2001. p. 3356–3363.
  • Bicchi A, Tonietti G. Fast and ‘soft-arm’ tactics [robot arm design]. IEEE Robot Autom Mag. 2004;11(2):22–33.
  • Yamada Y, Yamamoto T, Morizono T, et al. Fta-based issues on securing human safety in a human/robot coexistence system. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028). Vol. 2. IEEE; 1999. p. 1058–1063.
  • Salisbury JK. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes. IEEE; 1980. p. 95–100.
  • Hogan N. Impedance control: an approach to manipulation: part II–implementation. J Dyn Syst Meas Control. 1985;107(1):8–16.
  • Butler JT, Agah A. Psychological effects of behavior patterns of a mobile personal robot. Auton Robots. 2001;10(2):185–202.
  • Yamada Y, Hirasawa Y, Huang S, et al. Human-robot contact in the safeguarding space. IEEE ASME Trans Mechatron. 1997;2(4):230–236.
  • Kulić D, Croft EA. Real-time safety for human–robot interaction. Rob Auton Syst. 2006;54(1):1–12.
  • Gopinath V, Johansen K, Ölvander J. Risk assessment for collaborative operation: a case study on hand-guided industrial robots. In: Valentina S, editor. Risk assessment. Rijeka, Croatia: InTech; 2018. p. 167–187.
  • Chen JH, Song KT. Collision-free motion planning for human-robot collaborative safety under cartesian constraint. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. p. 1–7.
  • Grahn S, Gopinath V, Wang XV, et al. Exploring a model for production system design to utilize large robots in human-robot collaborative assembly cells. Procedia Manuf. 2018;25:612–619.
  • Villani V, Pini F, Leali F, et al. Survey on human–robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics. 2018;55:248–266.
  • Akima H. A new method of interpolation and smooth curve fitting based on local procedures. J ACM (JACM). 1970;17(4):589–602.
  • Djezairi S, Akli I, Zamoum-Boushaki R, et al. Mission allocation and execution for human and robot agents in industrial environment. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (Ro-Man). IEEE; 2018. p. 796–801.
  • Heydaryan S, Suaza Bedolla J, Belingardi G. Safety design and development of a human-robot collaboration assembly process in the automotive industry. Appl Sci. 2018;8(3):344.
  • Hentout A, Aouache M, Maoudj A, et al. Key challenges and open issues of industrial collaborative robotics. 2018 The 27th IEEE International Symposium on Workshop on Human-Robot Interaction: from Service to Industry (HRI-SI2018) at Robot and Human Interactive Communication. Proceedings. IEEE; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.