404
Views
2
CrossRef citations to date
0
Altmetric
Full Papers

Force sensorless admittance control of body weight support system

ORCID Icon, , &
Pages 425-436 | Received 18 Oct 2020, Accepted 02 Jan 2021, Published online: 21 Jan 2021

References

  • Barela AMF, Gama GL, Russo-Junior DV et al. Gait alterations during walking with partial body weight supported on a treadmill and over the ground. Sci Rep. 2019;9(1):1–9.
  • Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther. 1991;71(11):842–855.
  • Meyns P, Van De Crommert HW, Rijken H et al. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed. Spinal Cord. 2014;52(12):887–893.
  • Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight–supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005 01;85(1):52–66.
  • Van Thuc T, Yamamoto S. Development of a body weight support system using pneumatic muscle actuators: controlling and validation. Adv. Mech. Eng. 2016;8(12):1–13.
  • Frey M, Colombo G, Vaglio M et al. A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):311–321.
  • Kwak J, Choi W, Oh S. Modal force and torque control with wire-tension control using series elastic actuator for body weight support system. In: IECON 2017 – 43rd Ann Conf IEEE Ind Electron Soc. IEEE; 2017. p. 6739–6744.
  • Kobayashi Y, Watanabe T, Seki M et al. Soft interaction between body weight support system and human using impedance control based on fractional calculus. Adv Robot. 2012;26(11-12):1253–1269.
  • Luu T, Lim H, Qu X. Pelvic motion assistance of NaTUre-gaits with adaptive body weight support. In: ASCC 2011 – 8th Asian Control Conf Final Program. IEEE; 2011. p. 950–955.
  • Gembalczyk G, Duda S, Świtoński E. Computational optimization and implementation of control system for mechatronic treadmill with body weight support system. J Theor Appl Mech. 2018;56(4):1179–1191.
  • Ge Li Z, Ren Z, Zhao K et al. Human-cooperative control design of a walking exoskeleton for body weight support. IEEE Trans Ind Inf. 2019;PP(c):1.
  • Hidler J, Brennan D, Black I et al. ZeroG: overground gait and balance training system. J Rehab Res Dev. 2011;48(4):287.
  • Huang J, Ri M, Wu D et al. Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum. IEEE Trans Fuzzy Syst. 2018;26(4):2030–2038.
  • Ohba Y, Katsura S, Ohishi K. Sensor-less force control for machine tool using reaction torque observer. In: 2006 IEEE Int Conf Ind Technol. IEEE; 2006. p. 860–865.
  • Asai T, Ohba Y, Ohishi K. High performance sensor-less injection force control considering friction phenomenon. In: 2010 11th IEEE Int Workshop Adv Motion Control. IEEE; 2010. p. 30–35.
  • Rakotondrabe M, Ivan IA, Khadraoui S et al. Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE ASME Trans Mechatron. 2015;20(2):519–531.
  • Politis G. Application of a bem time stepping algorithm in understanding complex unsteady propulsion hydrodynamic phenomena. Ocean Eng. 2011;38(4):699–711.
  • Tsounis V, Makrodimitris M, Papadopoulos E. A low cost, sensor-less drag force estimation methodology via measuring of motor currents. In: 2014 IEEE/ASME Int Conf Adv Intell Mechatron. IEEE; 2014. p. 354–359.
  • Takesue N, Nobata S, Fujimoto H. Admittance control method achieving steady contact. J Robot Soc Jpn. 2008;26(6):635–642.
  • Cao Y, Huang J, Xiong C et al. Adaptive proxy-based robust control integrated with nonlinear disturbance observer for pneumatic muscle actuators. IEEE ASME Trans Mechatron. 2020;25(4):1756–1764.
  • Huang J, Cao Y, Wang YW. Adaptive proxy-based sliding mode control for a class of second-order nonlinear systems and its application to pneumatic muscle actuators. ISA Trans. 2020. DOI:10.1016/j.isatra.2020.09.009
  • Cao Y, Huang J, Xiong C. Single-layer learning based predictive control with echo state network for pneumatic muscle actuators-driven exoskeleton. IEEE Trans Cognit Dev Syst. 2020;(1). DOI:10.1109/TCDS.2020.2968733
  • McGowan CP, Neptune RR, Kram R. Independent effects of weight mass on plantar flexor activity during walking: implications for their contributions to body support and forward propulsion. J Appl Physiol Respir Environ Exerc Physiol. 2008;105(2):486–494.
  • Tanner NA, Niemeyer G. High-frequency acceleration feedback in wave variable telerobotics. IEEE ASME Trans Mechatron. 2006;11(2):119–127.
  • Lu Q, Liang J, Qiao B, Ma O. A new active body weight support system capable of virtually offloading partial body mass. IEEE ASME Trans Mechatron. 2013;18(1):11–20.
  • Shi Q, Gao Z, Jia G et al. Implementing rat-like motion for a small-sized biomimetic robot based on extraction of key movement joints. IEEE Trans Robot. 2020;1–16. DOI:10.1109/TRO.2020.3033705
  • Jamwal PK, Hussain S, Ghayesh MH et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Trans Ind Electron. 2016;63(6):3638–3647.
  • Hussain S, Xie SQ, Jamwal PK. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern. 2013;43(3):1025–1034.
  • Gamazo-Real JC, Vázquez-Sánchez E, Gómez-Gil J. Position and speed control of brushless dc motors using sensorless techniques and application trends. Sensors. 2010;10(7):6901–6947.
  • Marton L, Lantos B. Control of mechanical systems with stribeck friction and backlash. Syst Control Lett. 2009;58(2):141–147.
  • Shi KL, Chan T, Wong YK et al. Modelling and simulation of the three-phase induction motor using simulink. Int J Electr Eng Educ. 1999;36(2):163–172.
  • Accetta A, Cirrincione M, Pucci M et al. Closed-loop MRAS speed observer for linear induction motor drives. IEEE Trans Ind Appl. 2015;51(3):2279–2290.
  • Oh S, Kong K, Hori Y. Design and analysis of force-sensor-less power-assist control. IEEE Trans Ind Electron. 2013;61(2):985–993.
  • Santos TL, Araújo JM, Franklin TS. Receptance-based stability criterion for second-order linear systems with time-varying delay. Mech Syst Signal Process. 2018;110:428–441.
  • HKhalil H. Nonlinear systems. Upper Saddle River (NJ): Prentice Hall; 2002.
  • Ando S, Nagai R, Inoue Y. Apparatus and method for adjusting parameter of impedance control. US patent no. 8,626,341; 2014.
  • Liu L, Wu Z. A new identification method of the stribeck friction model based on limit cycles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2014;228(15):2678–2683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.