1,079
Views
1
CrossRef citations to date
0
Altmetric
Full Papers

Objective evaluation of mechanical expressiveness in android and human faces

Pages 767-780 | Received 18 Oct 2021, Accepted 21 Jun 2022, Published online: 09 Aug 2022

References

  • Kobayashi H, Tsuji T, Kikuchi K. Study of a face robot platform as a Kansei medium. In: Proceedings of the 26th Annual Conference of the IEEE Industrial Electronics Society; Vol. 1; Nagoya, Japan; 2000. p. 481–486.
  • Hanson D, Pioggia G, Dinelli S, et al. Identity emulation (IE): bio-inspired facial expression interfaces for emotive robots. In: AAAI Mobile Robot; Edmonton, Alberta, Canada; 2002.
  • Kobayashi H, Ichikawa Y, Senda M, et al. Realization of realistic and rich facial expressions by face robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; Vol. 2; Las Vegas, NV, USA; 2003. p. 1123–1128.
  • Wu W, Men Q, Wang Y. Development of the humanoid head portrait robot system with flexible face and expression. In: Proceedings of IEEE International Conference on Robotics and Biomimetics; Shenyang, China; 2004. p. 757–762.
  • Pioggia G, Ahluwalia A, Carpi F, et al. FACE: facial automaton for conveying emotions. Appl Bionics Biomech. 2004;1(2):91–100.
  • Hashimoto T, Senda M, Kobayashi H. Realization of realistic and rich facial expressions by face robot. In: Proceedings of the IEEE Conference on Robotics and Automation. TExCRA Technical Exhibition Based; Minato, Japan; 2004. p. 37–38.
  • Berns K, Hirth J. Control of facial expressions of the humanoid robot head ROMAN. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; Beijing, China; 2006. p. 3119–3124.
  • Hashimoto T, Hiramatsu S, Kobayashi H. Development of face robot for emotional communication between human and robot. In: Proceedings of the IEEE International Conference on Mechatronics & Automation; Luoyang, China; 2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.8768.
  • Hashimoto M, Yokogawa C, Sadoyama T. Development and control of a face robot imitating human muscular structures. In: Proceedings of the International Conference on Intelligent Robots and Systems; Beijing, China; 2006. p. 1855–1860.
  • Hashimoto T, Hiramatsu S, Kobayashi H. Dynamic display of facial expressions on the face robot made by using a life mask. In: Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots; Daejeon, Korea; 2008. p. 521–526.
  • Allison B, Nejat G, Kao E. The design of an expressive humanlike socially assistive robot. J Mech Robot. 2009;1(1):Article ID 011001.
  • Lee DW, Lee TG, So B, et al. Development of an android for emotional expression and human interaction. In: Proceedings of the Seventeenth World Congress the International Federation of Automatic Control; Seoul, Korea; 2008. p. 4336–4337.
  • Ishihara H, Yoshikawa Y, Asada M. Realistic child robot ‘Affetto’ for understanding the caregiver-child attachment relationship that guides the child development. In: Proceedings of the International Conference on Development and Learning; Frankfurt am Main, Germany; 2011. p. 1–5.
  • Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. J Mech Robot. 2011;3(1):Article ID 011008.
  • Tadesse Y, Priya S. Graphical facial expression analysis and design method: an approach to determine humanoid skin deformation. J Mech Robot. 2012;4(2):Article ID 021010.
  • Chihara T, Wang C, Niibori A, et al. Development of a head robot with facial expression for training on neurological disorders. In: Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO); Shenzhen, China; 2013. p. 1384–1389.
  • Yu Z, Ma G, Huang Q. Modeling and design of a humanoid robotic face based on an active drive points model. Adv Robot. 2014;28(6):379–388.
  • Lin CY, Huang CC, Cheng LC. An expressional simplified mechanism in anthropomorphic face robot design. Robotica. 2016;34(3):652–670.
  • Asheber WT, Lin CY, Yen SH. Humanoid head face mechanism with expandable facial expressions. Int J Adv Robot Syst. 2016;13(1):29.
  • Glas DF, Minato T, Ishi CT, et al. ERICA: the ERATO intelligent conversational android. In: Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN); NY, USA; 2016. p. 22–29.
  • Ishihara H, Wu B, Asada M. Identification and evaluation of the face system of a child android robot affetto for surface motion design. Front Robot AI. 2018 Oct;5:119.
  • Ekman P, Friesen WV, Hager JC. Facial action coding system (FACS). Salt Lake City (UT): Paul Ekman Group LLC; 2002.
  • Lazzeri N, Mazzei D, Greco A, et al. Can a humanoid face be expressive? A psychophysiological investigation. Front Bioeng Biotechnol. 2015;3:64.
  • Becker-Asano C, Ishiguro H. Evaluating facial displays of emotion for the android robot Geminoid F. In: Proceedings of the IEEE Workshop on Affective Computational Intelligence (WACI); Paris, France; 2011. p. 1–8.
  • Cheng LC, Lin CY, Huang CC. Visualization of facial expression deformation applied to the mechanism improvement of face robot. Int J Soc Robot. 2013;5(4):423–439.
  • Baldrighi E, Thayer N, Stevens M, et al. Design and implementation of the bio-Inspired facial expressions for medical mannequin. Int J Soc Robot. 2014;6(4):555–574.
  • Ishihara H, Iwanaga S, Asada M. Comparison between the facial flow lines of androids and humans. Front Robot AI. 2021;8:Article ID 540193. DOI:10.3389/frobt.2021.540193
  • Nakaoka S, Kanehiro F, Miura K, et al. Creating facial motions of cybernetic human HRP-4C. In: Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots; Paris, France; 2009. DOI:10.1109/ichr.2009.5379516
  • Duchon J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive theory of functions of several variables. Berlin Heidelberg: Springer; 1977. p. 85–100.
  • Sibson R. A brief description of natural neighbour interpolation. In: Interpreting multivariate data. 1981. Available from: https://ci.nii.ac.jp/naid/10022185042/.
  • Shah STH, Xuezhi X. Traditional and modern strategies for optical flow: an investigation. SN Appl Sci. 2021;3:289. DOI:10.1007/s42452-021-04227-x