187
Views
0
CrossRef citations to date
0
Altmetric
Full Papers

Obtaining emergent behaviors for swarm robotics singling with deep reinforcement learning

, ORCID Icon, &
Pages 702-717 | Received 28 Sep 2022, Accepted 12 Mar 2023, Published online: 30 Mar 2023

References

  • Long NK, Sammut K, Sgarioto D, et al. A comprehensive review of shepherding as a bio-inspired swarm-robotics guidance approach. IEEE Trans Emerg Top Comput Intell. 2020;4(4):523–537.
  • Strömbom D, Mann RP, Wilson AM, et al. Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J R Soc Interface. 2014;11(100):20140719.
  • Harvey J. The blessing and curse of emergence in swarm intelligence systems. In: Abbass HA, Scholz J, Reid DJ, editors. Foundations of trusted autonomy. Vol. 117, Cham: Springer International Publishing; 2018. p. 117–124.
  • Hussein A, Petraki E, Elsawah S, et al. Autonomous swarm shepherding using curriculum-based reinforcement learning. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems; Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems; 2022. p. 633–641; AAMAS '22.
  • Wijmans E, Kadian A, Morcos A, et al. Decentralized distributed ppo: Solving pointgoal navigation; 2020.
  • Peng XB, Berseth G, Yin K, et al. DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans Graph. 2017;36(4):1–13.
  • Lien JM, Rodriguez S, Malric J, et al. Shepherding behaviors with multiple shepherds. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation; Barcelona, Spain: IEEE; 2005. p. 3402–3407.
  • R Goel, J Lewis, M A G, Nan S. Leader and predator based swarm steering for multiple tasks. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); 2019. p. 3791–3798.
  • Vo C, Harrison J F, Lien J. Behavior-based motion planning for group control. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009. p. 3768–3773.
  • Lee W, Kim D. Autonomous shepherding behaviors of multiple target steering robots. Sensors. 2017;17(12):2729.
  • Miki T, Nakamura T. An effective simple shepherding algorithm suitable for implementation to a multi-Mmobile robot system. In: First International Conference on Innovative Computing, Information and Control – Volume I (ICICIC'06); Vol. 3; 2006. p. 161–165.
  • Bacon M, Olgac N. Swarm herding using a region holding sliding mode controller. J Vib Control. 2012;18(7):1056–1066.
  • Pierson A, Schwager M. Controlling noncooperative herds with robotic herders. IEEE Trans Robot. 2018;34:517–525.
  • Gomes J, Duarte M, Mariano P, et al. Cooperative coevolution of control for a real multirobot system. Vol. 9921, 2016.
  • Ordaz-Rivas E, Rodriguez-Liñan A, Torres-Treviño L. Flock of robots with self-cooperation for prey-predator task. J Intell Robot Syst. 2021;101(2):39.
  • Fujioka K, Hayashi S. Effective shepherding behaviours using multi-agent systems. In: 2016 IEEE Region 10 Conference (TENCON); 2016. p. 3179–3182.
  • Tsunoda Y, Sueoka Y, Sato Y, et al. Analysis of local-camera-based shepherding navigation. Adv Robot. 2018;32(23):1217–1228.
  • Lien JM, Rodriguez S, Malric JP, et al. Shepherding behaviors with multiple shepherds. Vol. 2005; 2005.
  • Singh H, Campbell B, Elsayed S, et al. Modulation of force vectors for effective shepherding of a swarm: a bi-objective approach. In: 2019 IEEE Congress on Evolutionary Computation (CEC); 2019. p. 2941–2948.
  • Schultz A, Grefenstette J, Adams W. Robo-shepherd: learning complex robotic behaviors. Washington, DC: Naval Research Laboratory; 1999. Obtained from original paper at: https://www.researchgate.net/publication/2782918_Robo-Shepherd_Learning_Complex_Robotic_Behaviors.
  • Karami M, Tavakolpour-Saleh A, Norouzi A. Modeling, development, and evaluation of a micro-robot equipped with vibratory actuator. Mod Mech Eng. 2017;17:413–422.
  • Aznar F, Pujol M, Rizo R. Learning a swarm foraging behavior with microscopic fuzzy controllers using deep reinforcement learning. Appl Sci. 2021;11(6):2856.
  • Bernstein AV, Burnaev EV, Kachan ON. Reinforcement learning for computer vision and robot navigation. In: Perner P, editor. Machine learning and data mining in pattern recognition. Vol. 10935. Cham: Springer International Publishing; 2018. p. 258–272.
  • Iima H, Kuroe Y. Swarm reinforcement learning methods improving certainty of learning for a multi-robot formation problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC); 2015. p. 3026–3033.
  • Hüttenrauch M, Šošić A, Neumann G. Guided deep reinforcement learning for swarm systems. arXiv preprint. 2017;16.
  • Hüttenrauch M, Adrian S, Neumann G, et al. Deep reinforcement learning for swarm systems. J Mach Learn Res. 2019;20(54):1–31.
  • Tai L, Zhang J, Liu M, et al. A survey of deep network solutions for learning control in robotics: from reinforcement to imitation. arXiv:161207139 [cs]; 2016.
  • Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evol Comput. 2001;9(2):159–195.
  • Suttorp T, Hansen N, Igel C. Efficient covariance matrix update for variable metric evolution strategies. Mach Learn. 2009;75(2):167–197.
  • Salimans T, Ho J, Chen X, et al. Evolution strategies as a scalable alternative to reinforcement learning. arXiv:170303864 [cs, stat]; 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.