1,397
Views
2
CrossRef citations to date
0
Altmetric
Full Papers

Active exploration based on information gain by particle filter for efficient spatial concept formation

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 840-870 | Received 19 Nov 2022, Accepted 01 Jun 2023, Published online: 21 Jun 2023

References

  • Kostavelis I, Gasteratos A. Semantic mapping for mobile robotics tasks: a survey. Rob Auton Syst. 2015;66:86–103. doi: 10.1016/j.robot.2014.12.006
  • Garg S, Sünderhauf N, Dayoub F, et al. Semantics for robotic mapping, perception and interaction: a survey. Foundations and Trends® in Robotics. 2020 Jan;8(1–2):1–224. doi: 10.1561/2300000059
  • Taniguchi A, Hagiwara Y, Taniguchi T, et al. Online spatial concept and lexical acquisition with simultaneous localization and mapping. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver. 2017. p. 811–818.
  • Taniguchi A, Hagiwara Y, Taniguchi T, et al. Improved and scalable online learning of spatial concepts and language models with mapping. Auton Robots. 2020;44(6):927–946. doi: 10.1007/s10514-020-09905-0
  • Friston KJ. Active inference: a process theory. Neural Comput. 2017;49:1–49. doi: 10.1162/NECO_a_00912
  • Friston KJ, Moran RJ, Nagai Y, et al. World model learning and inference. Neural Netw. 2021 Dec;144:573–590. doi: 10.1016/j.neunet.2021.09.011
  • Lanillos P, Meo C, Pezzato C, et al. Active inference in robotics and artificial agents: survey and challenges. arXiv. 2021 Dec. Available from: http://arxiv.org/abs/2112.01871.
  • Thrun S, Burgard W, Fox D. Probabilistic robotics. Cambridge (MA): MIT Press; 2005.
  • Stachniss C, Grisetti G, Burgard W. Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: Science and Systems, Cambridge, MA. Vol. 2. 2005. p. 65–72.
  • Mu B, Giamou M, Paull L, et al. Information-based active SLAM via topological feature graphs. In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016. CDC; 2016. p. 5583–5590. 1509.08155.
  • Placed JA, Strader J, Carrillo H, et al. A survey on active simultaneous localization and mapping: state of the art and new frontiers. IEEE Trans Robot. 2023 Jun;39(3):1–12. doi:10.1109/TRO.2023.3248510
  • Taniguchi T, Yoshino R, Takano T. Multimodal hierarchical Dirichlet process-based active perception by a robot. Front Neurorobot. 2018 may;12(May):22. Available from: https://www.frontiersin.org/article/10.3389/fnbot.2018.00022. http://arxiv.org/abs/1510.00331.
  • Yoshino R, Takano T, Tanaka H, et al. Active exploration for unsupervised object categorization based on multimodal hierarchical dirichlet process. In: IEEE/SICE International Symposium on System Integrations (SII), Iwaki. 2021.
  • Veiga TS, Silva M, Ventura R, et al. A hierarchical approach to active semantic mapping using probabilistic logic and information reward POMDPs. In: Proceedings International Conference on Automated Planning and Scheduling (ICAPS). ICAPS; 2019. p. 773–781.
  • Chaplot DS, Dalal M, Gupta S, et al. SEAL: self-supervised embodied active learning using exploration and 3D consistency. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS). Vol. 16. 2021. p. 13086–13098. 2112.01001.
  • Anderson P, Wu Q, Teney D, et al. Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Salt Lake City. 2018. p. 3674–3683.
  • Chen K, Chen JK, Chuang J, et al. Topological planning with transformers for vision-and-language navigation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Nashville (TN), USA; 2021. p. 11271–11281. Available from: http://arxiv.org/abs/2012.05292.
  • Park SM, Kim YG. Visual language navigation: a survey and open challenges. Artif Intell Rev. 2022 Mar;2022:1–63. doi: 10.1007/s10462-022-10174-9
  • Ulker Y, Günsel B, Cemgil T. Sequential Monte Carlo samplers for Dirichlet process mixtures. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia. 2010. p. 876–883.
  • Asada M, Hosoda K, Kuniyoshi Y, et al. Cognitive developmental robotics: a survey. IEEE Trans Auton Ment Dev. 2009;1(1):12–34. doi: 10.1109/TAMD.2009.2021702
  • Cangelosi A, Schlesinger M. Developmental robotics: from babies to robots. MIT Press; 2015. (Intelligent robotics and autonomous agents series). Available from: https://books.google.co.jp/books?id=AbKPoAEACAAJ.
  • Taniguchi T, Piater J, Worgotter F, et al. Symbol emergence in cognitive developmental systems: a survey. IEEE Trans Cogn Develop Syst. 2019;11(4):494–516. doi: 10.1109/TCDS
  • Ha D, Schmidhuber J. World models. 2018. (Tech Rep. 1803.10122). Available from: https://worldmodels.github.io.
  • Friston KJ, Kilner J, Harrison L. A free energy principle for the brain. J Physiol Paris. 2006 Jul;100(1):70–87. doi: 10.1016/j.jphysparis.2006.10.001
  • Friston KJ, Adams RA, Perrinet L, et al. Perceptions as hypotheses: saccades as experiments. Front Psychol. 2012;3:151. doi: 10.3389/fpsyg.2012.00151
  • Friston KJ. The free-energy principle: a unified brain theory?. Nat Rev Neurosci. 2010;11(2):127. doi: 10.1038/nrn2787
  • Friston KJ, Rigoli F, Ognibene D, et al. Active inference and epistemic value. Cogn Neurosci. 2015;6(4):187–214. doi: 10.1080/17588928.2015.1020053
  • Rangel JC, Martinez-Gomez J, Garcia-Varea I, et al. LexToMap: lexical-based topological mapping. Adv Robot. 2017;31(5):268–281. doi: 10.1080/01691864.2016.1261045
  • Grinvald M, Furrer F, Novkovic T, et al. Volumetric instance-aware semantic mapping and 3D object discovery; volumetric instance-aware semantic mapping and 3D object discovery. IEEE Robot Autom Lett. 2019;4(3):3037–3044. Available from: http://www.ieee.org/publications_standards/publications/rights/index.html.
  • Rosinol A, Violette A, Abate M, et al. From SLAM to spatial perception with 3D dynamic scene graphs. Int J Rob Res. 2021;40:1510–1546. Available from: www.sagepub.com/ https://github.com/MIT-.
  • Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55(4):189–208. doi: 10.1037/h0061626
  • O'keefe J, Nadel L. The hippocampus as a cognitive map. Vol. 27. Cambridge: Cambridge University Press; 1978.
  • Taniguchi A, Fukawa A, Yamakawa H. Hippocampal formation-inspired probabilistic generative model. Neural Netw. 2022 Mar;151:317–335. Available from: http://creativecommons.org/licenses/by/4.0/ http://arxiv.org/abs/2103.07356.
  • Taniguchi A, Isobe S, El Hafi L, et al. Autonomous planning based on spatial concepts to tidy up home environments with service robots. Adv Robot. 2021;35(8):471–489. doi: 10.1080/01691864.2021.1890212
  • Taniguchi A, Hagiwara Y, Taniguchi T, et al. Spatial concept-based navigation with human speech instructions via probabilistic inference on Bayesian generative model. Adv Robot. 2020 Sep;34(19):1213–1228. doi: 10.1080/01691864.2020.1817777
  • Katsumata Y, Taniguchi A, El Hafi L, et al. SpCoMapGAN: spatial concept formation-based semantic mapping with generative adversarial networks. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: Institute of Electrical and Electronics Engineers Inc.; 2020 Oct. p. 7927–7934.
  • Katsumata Y, Kanechika A, Taniguchi A, et al. Map completion from partial observation using the global structure of multiple environmental maps. Adv Robot. 2022 Mar;1–12. Available from: https://arxiv.org/abs/2103.09071v1
  • Hagiwara Y, Taguchi K, Ishibushi S, et al. Hierarchical Bayesian model for the transfer of knowledge on spatial concepts based on multimodal information. Adv Robot. 2022 Mar;36(1-2):33–53. Available from: https://arxiv.org/abs/2103.06442v1
  • Sagara R, Taguchi R, Taniguchi A, et al. Unsupervised lexical acquisition of relative spatial concepts using spoken user utterances. Adv Robot. 2021 Jun;36(1–2):54–70. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=tadr20 https://arxiv.org/abs/2106.08574v1
  • Wang X, Huang Q, Celikyilmaz A, et al. Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA. Vol. 2019. 2019 Jun. p. 6622–6631. 1811.10092.
  • Montemerlo M, Thrun S, Koller D, et al. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). Acapulco, Mexico; 2003. p. 1151–1156.
  • Grisetti G, Stachniss C, Burgard W. Improving grid-based slam with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2005 Apr. p. 2432–2437.
  • Yamauchi B. Frontier-based exploration using multiple robots. In: AGENTS '98: Proceedings of the second international conference on Autonomous agents, Minneapolis, MN. 1998. p. 47–53. doi: 10.1145/280765.280773
  • Placed JA, Castellanos JA. Fast autonomous robotic exploration using the underlying graph structure. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Section IV. 2021. p. 6649–6656.
  • Chaplot DS, Gandhi D, Gupta S, et al. Learning to explore using active neural SLAM. In: Proceedings of the International Conference on Learning Representations (ICLR). 2020. arXiv:2004.05155v1.
  • Çatal O, Verbelen T, Van de Maele T, et al. Robot navigation as hierarchical active inference. Neural Netw. 2021 oct;142:192–204. doi: 10.1016/j.neunet.2021.05.010
  • Asgharivaskasi A, Atanasov N. Semantic OcTree mapping and Shannon mutual information computation for robot exploration. IEEE Trans Robot. 2023. doi: 10.1109/TRO.2023.3245986
  • Paul R, Arkin J, Aksaray D, et al. Efficient grounding of abstract spatial concepts for natural language interaction with robot platforms. Int J Robot Res. 2018;37(10):1269–1299. doi: 10.1177/0278364918777627
  • Patki S, Daniele AF, Walter MR, et al. Inferring compact representations for efficient natural language understanding of robot instructions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal. 2019. p. 6926–6933.
  • Sugiura K, Iwahashi N, Kashioka H, et al. Active learning of confidence measure function in robot language acquisition framework. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei. 2010. p. 1774–1779.
  • Chen Y, Bordes JBB, Filliat D. An experimental comparison between NMF and LDA for active cross-situational object-word learning. In: Proceedings of the Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Cergy-Pontoise. 2016. p. 217–222.
  • Nakamura T, Araki T, Nagai T, et al. Grounding of word meanings in latent Dirichlet allocation-Based multimodal concepts. Adv Robot. 2011;25(17):2189–2206. doi: 10.1163/016918611X595035
  • Chaplot DS, Jiang H, Gupta S, et al. Semantic curiosity for active visual learning. 2020;12351 LNCS:309–326. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)). Available from: http://arxiv.org/abs/2006.09367.
  • Georgakis G, Bucher B, Schmeckpeper K, et al. Learning to map for active semantic goal navigation. In: Proceedings of the International Conference on Learning Representations (ICLR). 2022 Mar. Available from: http://arxiv.org/abs/2106.15648.
  • Ramakrishnan SK, Jayaraman D, Grauman K. An exploration of embodied visual exploration. Int J Comput Vis. 2021;129(5):1616–1649. Available from: http://arxiv.org/abs/2001.02192
  • Oliver G, Lanillos P, Cheng G. An empirical study of active inference on a humanoid robot. IEEE Trans Cogn Develop Syst. 2022;14(2):462–471. Available from: http://arxiv.org/abs/1906.03022%0A
  • Horii T, Nagai Y. Active inference through energy minimization in multimodal affective human–Robot interaction. Front Robot AI. 2021 Nov;8:361. doi: 10.3389/frobt.2021.684401
  • Doya K, Ishii S, Pouget A, et al. Bayesian brain: probabilistic approaches to neural coding. Cambridge, MA: MIT Press; 2007.
  • Hafner D, Lillicrap T, Fischer I, et al. Learning latent dynamics for planning from pixels. In: Proceedings of the International Conference on Machine Learning (ICML), Long Beach. Vol. 2019. 2019 Jun. p. 4528–4547. 1811.04551.
  • Okada M, Kosaka N, Taniguchi T. PlaNet of the Bayesians: reconsidering and improving deep planning network by incorporating Bayesian inference. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas. 2020. arXiv:2003.00370v1.
  • Ball PJ, Holder JP, Pacchiano A, et al. Ready policy one: world building through active learning. In: 37th International Conference on Machine Learning, (ICML). Vol. PartF16814. 2020. p. 568–578. Available from: http://arxiv.org/abs/2002.02693.
  • Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999 Jan;2(1):79–87. Available from: https://pubmed.ncbi.nlm.nih.gov/10195184/
  • Murphy KP. Machine learning: a probabilistic perspective. Cambridge (MA): MIT Press; 2012.
  • Sethuraman J. A constructive definition of Dirichlet priors. Stat Sin. 1994;4:639–650. doi:10.21236/ada238689
  • Ishwaran H, James LF. Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc. 2001;96(453):161–173. doi: 10.1198/016214501750332758
  • Fox EB, Sudderth EB, Jordan MI, et al. A sticky HDP-HMM with application to speaker diarization. Ann Appl Stat. 2011;5(2A):1020–1056. doi: 10.1214/10-AOAS395
  • Doucet A, De Freitas N, Murphy K, et al. Rao-blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc.; 2000. p. 176–183. 1301.3853.
  • Yamamoto T, Terada K, Ochiai A, et al. Development of human support robot as the research platform of a domestic mobile manipulator. ROBOMECH J. 2019;6(1):4. doi: 10.1186/s40648-019-0132-3
  • Inamura T, Mizuchi Y. SIGVerse: a cloud-based VR platform for research on multimodal human-robot interaction. Front Robot AI. 2021 May;8:158. doi: 10.3389/frobt.2021.549360
  • Quigley M, Conley K, Gerkey BP, et al. ROS: an open-source robot operating system. In: Proceedings of the ICRA Workshop on Open Source Software. Kobe, Japan; 2009.
  • Taniguchi A, Ito S, Taniguchi T. Spatial concept-based topometric semantic mapping for hierarchical path-planning from speech instructions. arXiv. 2022 Mar. Available from: https://arxiv.org/abs/2203.10820v1 http://arxiv.org/abs/2203.10820.
  • Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners. In: Advances in Neural Information Processing Systems. Vol. 2020-December. Neural Information Processing Systems Foundation; 2020 May. p. 1877–1901. Available from: https://commoncrawl.org/the-data/ https://arxiv.org/abs/2005.14165v4.
  • Ahn M, Brohan A, Brown N, et al. Do as i can, not as i say: grounding language in robotic affordances. arxiv preprint. 2022 Apr. Available from: http://arxiv.org/abs/2204.01691.
  • Levine S. Reinforcement learning and control as probabilistic inference: tutorial and review. arXiv preprint arXiv:180500909. 2018.
  • Taniguchi T, El Hafi L, Hagiwara Y, et al. toward the realization of remotely-operated service robots for the new normal symbiotic society. Adv Robot. 2021;35(11):664–674. doi: 10.1080/01691864.2021.1928552
  • Kong A, Liu JS, Wong WH. Sequential imputations and Bayesian missing data problems. J Am Stat Assoc. 1994 Mar;89(425):278. doi: 10.1080/01621459.1994.10476469
  • Liu JS. Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat Comput. 1996;6(2):113–119. Available from: http://130.203.136.95/viewdoc/summary?doi=10.1.1.31.6718