842
Views
23
CrossRef citations to date
0
Altmetric
Articles

Fabrication and use of artificial superhydrophilic surfaces

&
Pages 751-768 | Received 10 Mar 2011, Accepted 26 Aug 2011, Published online: 13 Aug 2012

References

  • Callies M, Quéré D. On water repellency. Soft Matter. 2005;1:55.
  • Sun T, Feng L, Gao X, Jiang L. Bioinspired surfaces with special wettability. Accounts of Chemical Research. 2005;38:644.
  • Li X, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews. 2007;36:1350.
  • Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry. 2008;18:621.
  • Ma M, Hill RM, Rutledge GC. A review of recent results on superhydrophobic materials based on micro-and nanofibers. Journal of Adhesive Science and Technology. 2008;22:1799.
  • Kim SH. Fabrication of superhydrophobic surfaces. Journal of Adhesive Science and Technology. 2008;22:235.
  • Zhang J, Han Y. Active and responsive polymer surfaces. Chemical Society Reviews. 2010;39:676.
  • Xin B, Hao J. Reversibly switchable wettability. Chemical Society Reviews. 2010;39:769.
  • Zhang J, Pu G, Severtson SJ. Anti-oil-fouling superhydrophobic surfaces. ACS Applied Material Interfaces. 2010;2:2880.
  • Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials. 2007;19:2213.
  • Cheng Y, Rodak DE. Is the lotus leaf superhydrophobic? Applied Physics Letters. 2005;86:144101.
  • Zhang L, Li Y, Sun J, Shen J. Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination. Langmuir. 2008;24:10851.
  • Zorba V, Chen X, Mao SS. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters. 2010;96:093702.
  • Cao L, Jones AK, Sikka VK, Wu J, Gao D. Frost formation and ice adhesion on superhydrophobic surfaces. Langmuir. 2009;25:12444.
  • Chaudhury MK, Whiteside GM. How to make water run uphill. Science. 1992;256:1539.
  • Bain CD, Burnett-Hall GD, Montgomerie RR. Rapid motion of liquid drops. Nature. 1994;372:414.
  • Zhang J, Han Y. Shape-gradient composite surfaces: water droplets move uphill. Langmuir. 2007;23:6136.
  • Genzer J, Bhat RR. Surface-bound soft matter gradients. Langmuir. 2008;24:2294.
  • Zhang J, Han Y. ‘Dual-parallel-channel’ shape-gradient surfaces: toward oriented and reversible movement of water droplets. Langmuir. 2009;25:14195.
  • Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Science. 2007;172:1103.
  • Liu Y, Chen X, Xin J. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspiration BIomimictics. 2008;3:046007.
  • Gao X, Jiang L. Biophysics: water-repellent legs of water striders. Nature. 2004;432:36.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry. 1936;28:988.
  • Cassie ABD, Baxter. Wettability of porous surfaces. Transactions on Faraday Society. 1944;40:546.
  • Sato O, Kubo S, Gu Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts of Chemical Research. 2009;42:1.
  • Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions on Royal Society A. 2009;367:1487.
  • Bhushan B. Biomimetics: lessons from nature–an overview. Philosophical Transactions on Royal Society A. 2009;367:1445.
  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431.
  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials. 1998;10:135.
  • Takata Y, Hidaka S, Masuda M, Ito T. Pool boiling on a superhydrophilic surface. International Journal of Energy Research. 2003;27:111.
  • Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Photoinduced surface reactions on TiO2 and SrTiO3 films: photocatalytic oxidation and photoinduced hydrophilicity. Chemistry of Materials. 2000;12:3.
  • Sun T, Wang G, Feng F, Liu B, Ma Y, Jiang L, Zhu D. Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie (International ed.). 2004;43:357.
  • Song K, Park J, Kang H, Kim S. Scratch and abrasion resistant coatings on plastic lenses—state of the art, current developments and perspectives. Journal of Sol-Gel Science and Technology. 2003;27:53.
  • Zhang J, Lu X, Huang W, Han Y. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromolecular Rapid Communications. 2005;26:477.
  • Jiang Y, Wang Z, Yu X, Shi F, Xu H, Zhang X. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and ph-responsive surfaces. Langmuir. 2005;21:1986.
  • Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P. Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications. 2005;3135:.
  • Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals Botany. 1997;79:667.
  • Ennos R, Sheffield L. Plant life. Methods in ecology series. Oxford: Blackwell Science; 2000.
  • Edelmann HG, Neinhuis C, Jarvis M, Evans B, Fischer E, Barthlott W. The puzzling cell wall ultrastructure and chemistry of the moss rhacocarpus (rhacocarpaceae): a unique extracellular architecture within plants. Planta. 1998;206:315.
  • Bohn HF, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of National Academy of Sciences (USA). 2004;101:14138.
  • Lightfoot EN, Moscariello JS. Bioseparations. Biotechnology and Bioengineering. 2004;87:259.
  • van Reis R, Zydney A. Membrane separations in biotechnology. Current Opinion in Biotechnology. 2001;12:208.
  • Mehta A, Zydney AL. Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science. 2005;249:245.
  • Ho WSW, Sirkar KK. Membrane handbook. New York, NY: Van Nostrand Reinhold; 1992.
  • Przybycien TM, Pujar NS, Steele LM. Alternative bioseparation operations: life beyond packed-bed chromatography. Current Opinion in Biotechnology. 2004;15:469.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37.
  • Chang KC, Heller A, Schwartz B, Menezes S, Miller B. Stable semiconductor liquid junction cell with 9 percent solar-to-electrical conversion efficiency. Science. 1977;196:1097.
  • Tufts BJ, Abrahams IL, Santangelo PG, Ryba GN, Casagrande LG, Lewis NS. Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell. Nature. 1987;326:861.
  • Licht S, Peramunage D. Efficient photoelectrochemical solar cells from electrolyte modification. Nature. 1990;345:330.
  • O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737.
  • Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature. 1980;286:474.
  • Fox MA, Dulay MT. Heterogeneous photocatalysis. Chemical Reviews. 1993;93:341.
  • Heller A. Chemistry and applications of photocatalytic oxidation of thin organic films. Accounts of Chemical Research. 1995;28:503.
  • Tsuge Y, Kim J, Sone Y, Kuwaki O, Shiratori S. Fabrication of transparent Tio2 film with high adhesion by using self-assembly methods: application to super-hydrophilic film. Thin Solid Films. 2008;516:2463.
  • Gao Y, Masuda Y, Koumoto K. Light-excited superhydrophilicity of amorphous Tio2 thin films deposited in an aqueous peroxotitanate solution. Langmuir. 2004;20:3188.
  • Miyauchi M, Tokudome H. Highly hydrophilic conversion on oriented Tio2 thin films synthesized by a facile spin-coating method. Applied Physics Letters. 2007;91:043111.
  • Linsebigler AL, Lu G, Yates JT Jr. Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chemical Reviews. 1995;95:735.
  • Kubo W, Tatsuma T. Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity. Journal of Materials Chemistry. 2005;15:3104.
  • Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chemistry of Materials. 2002;14:2812.
  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Materials. 2002;89:303.
  • Swarnalatha B, Anjanayuly Y. Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO2 suspension. Journal of Molecular Catalysis. 2004;223:161.
  • Al-Rasheed R, Cardin DJ. Photocatalytic degradation of humic acid in saline waters: part 2. effects of various photocatalytic materials. Applied Catalysis, A: General. 2003;246:39.
  • Hossein HM, Mohammad K, Morteza M. Photocatalytic mineralisation of aniline derivatives in aquatic systems using semiconductor oxides. Annali di Chimica. 2004;94:421.
  • Krylova G, Brioude A, Ababou-Girard S, Mrazek J, Spanhel L. Natural superhydrophilicity and photocatalytic properties of sol–gel derived ZnTiO3-ilmenite/r-TiO2 films. Physical Chemistry Chemical Physics: PCCP. 2010;12:15101.
  • Quéré D. Wetting and roughness. Annual Review of Materials Research. 2008;38:71.
  • Cebeci FC, Wu Z, Zhai L, Cohen RE, Rubner MF. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir. 2006;22:2856.
  • Kollias K, Wang H, Song Y, Zou M. Production of a superhydrophilic surface by aluminum-induced crystallization of amorphous silicon. Nanotechnology. 2008;19:465304.
  • Chen D, Tan L, Liu H, Hu J, Li Y, Tang F. Fabricating superhydrophilic wool fabrics. Langmuir. 2010;26:4675.
  • Li Y, Sasaki T, Shimizu Y, Koshizaki N. A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: synthesis and stable superhydrophilicity without UV Irradiation. Small (Weinheim an der Bergstrasse, Germany). 2008;4:2286.
  • Li L, Li Y, Gao S, Koshizaki N. Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. Journal of Materials Chemistry. 2009;19:8366.
  • Ichimura K, Oh SK, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science. 2000;288:1624.
  • Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. Journal of the American Chemical Society. 2004;126:62.
  • Xu L, Chen W, Mulchandani A, Yan Y. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angewandte Chemie International Edition. 2005;44:6009.
  • Yu X, Wang Z, Jiang Y, Shi F, Zhang X. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Advanced Materials. 2005;17:1289.
  • Wang J, Hu J, Wen Y, Song Y, Jiang L. Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity. Chemistry of Materials. 2006;18:4984.
  • Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Advanced Materials. 2006;18:432.
  • Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M, Minko S, Stamm M. Surface functionalization by smart coatings: stimuli-responsive binary polymer brushes. Progress in Organic Coatings. 2006;55:168.
  • Lim H, Lee S, Lee D, Lee D, Lee S, Cho K. Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction. Advanced Materials. 2008;20:4438.
  • Cui H, Yang GZ, Sun Y, Wang CX. Reversible ultraviolet light-manipulated superhydrophobic-to-superhydrophilic transition on a tubular SiC nanostructure film. Applied Physics Letters. 2010;97:183112.
  • Benedix R, Dehn F, Quaas J, Orgass M. Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer. 2000;5:157.
  • Patel P, Choi CK, Meng DD. Superhydrophilic surfaces for antifogging and antifouling microfluidic devices. Journal of Association for Laboratory Automation. 2010;15:114.
  • Shirtcliffe NJ, McHale G, Atherton S, Newton MI. An introduction to superhydrophobicity. Advances in Colloid and Interface Science. 2010;161:124.
  • Drelich J, Chibowski E. Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir. 2010;26:18621.
  • Drelich J, Chibowski E, Meng DD, Terpilowski K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter. 2011;7:9804 . doi:10.1039/C1SM05849E.
  • Fujishima A, Rao TN, Tryk DA. TiO2 photocatalysts and diamond electrodes. Electrochimica Acta. 2000;45:4683.
  • Liu X, He J. Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination. Journal of Physical Chemistry C. 2009;113:148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.