599
Views
24
CrossRef citations to date
0
Altmetric
Articles

Temperature dependence of microscale adhesion force between solid surfaces using an AFM

, &
Pages 133-148 | Received 14 Sep 2014, Accepted 14 Oct 2014, Published online: 06 Nov 2014

References

  • Kim SH, Asay DB, Dugger MT. Nanotribology and MEMS. Nano Today. 2007;2:22–29.10.1016/S1748-0132(07)70140-8
  • Grierson DS, Konicek AR, Wabiszewski GE, Sumant AV, de Boer MP, Corwin AD, Carpick RW. Characterization of microscale wear in a polysilicon-based MEMS device using AFM and PEEM–NEXAFS spectromicroscopy. Tribol. Lett. 2009;36:233–238.10.1007/s11249-009-9478-7
  • Fischer HR, Gelinck ERM. Determination of adhesion forces between smooth and structured solids. Appl. Surf. Sci. 2012;258:9011–9017.10.1016/j.apsusc.2012.05.140
  • Ando Y. The effect of relative humidity on friction and pull-off forces measured on submicron-size asperity arrays. Wear. 2000;238:12–19.10.1016/S0043-1648(99)00334-8
  • Ando Y. Effect of contact geometry on the pull-off force evaluated under high-vacuum and humid atmospheric conditions. Langmuir. 2008;24:1418–1424.10.1021/la702513r
  • Ferreira ODS, Gelinck E, de Graaf D, Fischer H. Adhesion experiments using an AFM-parameters of influence. Appl. Surf. Sci. 2010;257:48–55.10.1016/j.apsusc.2010.06.031
  • Çolak A, Wormeester H, Zandvliet HJW, Poelsema B. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl. Surf. Sci. 2012;258:6938–6942.
  • Çolak A, Wormeester H, Zandvliet HJW, Poelsema B. The influence of instrumental parameters on the adhesion force in a flat-on-flat contact geometry. Appl. Surf. Sci. 2014;308:106–112.
  • Lai T, Huang P. Study on microscale adhesion between solid surfaces with scanning probe. Sci. China Technol. Sci. 2013;56:2934–2952.10.1007/s11431-013-5404-1
  • Nelson BA, Poggi MA, Bottomley LA, King WP. Temperature-dependence of water bridge formation in atomic force microscopy. In: Proceedings ASME 2003 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers; 2003 November 15–21; Washington, DC. p. 629–636.
  • Tambe NS, Bhushan B. Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology. 2004;15:1561–1570.10.1088/0957-4484/15/11/033
  • Awada H, Noel O, Hamieh T, Kazzi Y, Brogly M. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale. Thin Solid Films. 2011;519:3690–3694.10.1016/j.tsf.2011.01.261
  • Shavezipur M, Gou W, Carraro C, Maboudian R. Characterization of Adhesion Force in MEMS at High Temperature Using Thermally Actuated Microstructures. J. Microelectromech. Syst. 2012;21:541–548.10.1109/JMEMS.2012.2189363
  • Cappella B, Stark W. Adhesion of amorphous polymers as a function of temperature probed with AFM force–distance curves. J. Colloid Interface Sci. 2006;296:507–514.10.1016/j.jcis.2005.09.043
  • Xie J, Xie HF, Liu XR, Tan TW. Dry micro-grooving on Si wafer using a coarse diamond grinding. Int. J. Mach. Tools Manuf. 2012;61:1–8.10.1016/j.ijmachtools.2012.05.004
  • Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 2005;59:1–152.10.1016/j.surfrep.2005.08.003
  • Carpick RW, Batteas J, Boer MPd. Scanning probe studies of nanoscale adhesion between solids in the presence of liquids and monolayer films. In: Bhushan B, editor. Springer handbook of nanotechnology. Heidelberg: Springer; 2007. p. 951–980.
  • Watanabe H, Yamada N, Okaji M. Linear thermal expansion coefficient of silicon from 293 to 1000 K. Int. J. Thermophys. 2004;25:221–236.10.1023/B:IJOT.0000022336.83719.43
  • Chun Hyung C. Characterization of Young’s modulus of silicon versus temperature using a ‘‘beam deflection’’ method with a four-point bending fixture. Curr. Appl. Phys. 2009;9:538–545.
  • Rao SS. Mechanical vibrations. 4th ed. New York (NY): Pearson Education; 2004.
  • Noy A. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr. Opin. Chem. Biol. 2011;15:710–718.10.1016/j.cbpa.2011.07.020
  • Wei Z, Zhao Y-P. Growth of liquid bridge in AFM. J. Phys. D: Appl. Phys. 2007;40:4368–4375.10.1088/0022-3727/40/14/036
  • Rabinovich YI, Singh A, Hahn M, Brown S, Moudgil B. Kinetics of liquid annulus formation and capillary forces. Langmuir. 2011;27:13514–13523.10.1021/la202191c
  • Sirghi L. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact. Langmuir. 2012;28:2558–2566.10.1021/la202917d
  • Sung B, Kim J, Stambaugh C, Chang SJ, Jhe W. Direct measurement of activation time and nucleation rate in capillary-condensed water nanomeniscus. Appl. Surf. Sci. 2013;103:213107.
  • Restagno F, Bocquet L, Biben T. Metastability and nucleation in capillary condensation. Phys. Rev. Lett. 2000;84:2433–2436.10.1103/PhysRevLett.84.2433
  • Szoszkiewicz R, Riedo E. Nucleation time of nanoscale water bridges. Phys. Rev. Lett. 2005;95:135502.
  • Dushman S. Scientific foundations of vacuum technique. New York (NY): Wiley; 1949.
  • Vargaftik NB, Volkov BN, Voljak LD. International tables of the surface tension of water. J. Phys. Chem. Ref. Data. 1983;12:817–820.10.1063/1.555688

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.