523
Views
7
CrossRef citations to date
0
Altmetric
Articles

Novel one-step route to induce long-term lotus leaf-like hydrophobicity in polyester fabric

, , , , &
Pages 555-567 | Received 29 Aug 2014, Accepted 09 Dec 2014, Published online: 06 Jan 2015

References

  • Arvind Singh R, Kim HJ, Kong H and Yoon E-S. Biomimetically engineered polymeric surfaces for micro-scale tribology. KSTLE Int. J. 2006;7:14–17.
  • Solga A, Cerman Z. The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2007;2:S126.10.1088/1748-3182/2/4/S02
  • Bormashenko E, Pogreb R, Stanevsky O, Biton Y, Bormashenko Y. Self-organization in thin polycarbonate films and its optical and electro-optical applications. J. Mater. Sci. 2004;39:6639–6641.10.1023/B:JMSC.0000044911.64725.b6
  • Li Y. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir. 2007;23:2169–2174.10.1021/la0620758
  • Baldacchini T, Carey JE, Zhou M, Mazur E. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir. 2006;22:4917–4919.10.1021/la053374k
  • Lee HJ, Michielsen S. Lotus effect: superhydrophobicity. J. Text. Inst. 2006;97:455–462.10.1533/joti.2006.0271
  • Rios PF, Dodiuk H, Kenig S, McCarthy S, Dotan A. Transparent ultra-hydrophobic surfaces. J. Adhes. Sci. Technol. 2007;21:399–408.10.1163/156856107780474975
  • Marmur A. The lotus effect: superhydrophobicity and metastability. Langmuir. 2004;20:3517–3519.10.1021/la036369u
  • Mao-Gang G, Xiao-Liang X, Zhou Y, Yan-Song L, Ling L. Superhydrophobic surfaces via controlling the morphology of ZnO micro/nanocomplex structure. Chin. Phys. B. 2010;19:056701.10.1088/1674-1056/19/5/056701
  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011;2:152–161.10.3762/bjnano.2.19
  • Liu Y, Tang J, Wang R. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J. Mater. Chem. 2007;17:1071–1078.10.1039/b613914k
  • Parkin IP, Palgrave RG. Self-cleaning coatings. J. Mater. Chem. 2005;15:1689–1695.10.1039/b412803f
  • Lee S-M, Cho S-H, Park J-G, Lee S-H. Study on microfabrication and its surface characterization of stainless steel. Proceeding of the 7th International workshop on microfactories; Daejeon, Korea, 2010; p. 557–560.
  • Basu BBJ, Paranthaman AK. A simple method for the preparation of superhydrophobic PVDF–HMFS hybrid composite coatings. Appl. Surf. Sci. 2009;255:4479–4483.
  • Luo BH, Shum PW, Zhou ZF, Li KY. Preparation of hydrophobic surface on steel by patterning using laser ablation process. Surf. Coat. Technol. 2010;204:1180–1185.10.1016/j.surfcoat.2009.10.043
  • Han JT, Zheng Y, Cho JH, Xu X, Cho K. Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly. J. Phys. Chem. 2005;109:20773–20778.
  • Jin M, Feng X, Xi J, Zhai J, Cho K, Feng L, Jiang L. Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid Commun. 2005;26:1805–1809.10.1002/(ISSN)1521-3927
  • Liu H, Feng L, Zhai J, Jiang L, Zhu D. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir. 2004;20:5659–5661.10.1021/la036280o
  • Zhao N, Shi F, Wang Z, Zhang X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir. 2005;21:4713–4716.10.1021/la0469194
  • Wang XC, Wu LYL, Shao Q, Zheng HY. 355 nm DPSS UV laser surface texturing on Si substrate. SIMTech Technical Reports. 2009;10:4.
  • Öner D, McCarthy TJ. Ultrahydrophobic surfaces: effects of topography length scales on wettability. Langmuir. 2000;16:7777–7782.10.1021/la000598o
  • Zhang L, Zhou Z, Cheng B, DeSimone JM, Samulski ET. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography. Langmuir. 2006;22:8576–8580.10.1021/la061400o
  • Furstner R, Barthlott W. Wetting and self cleaning properties of artifical superhydrophobic surfaces. Langmuir. 2005;21:956–961.10.1021/la0401011
  • Qu M, He J, Zhang J. Biomimetics learning from nature: Intech; 2012. Chapter 16, Superhydrophobicity, Learn from the Lotus Leaf; p. 325–342. Available from: http://www.intechopen.com/books/biomimetics-learning-from-nature
  • Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 2000;16:5754–5760.10.1021/la991660o
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994.10.1021/ie50320a024
  • Quere D. Wetting and roughness. Annu. Rev. Mater. Res. 2008;38:71–99.10.1146/annurev.matsci.38.060407.132434
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546–551.10.1039/tf9444000546
  • Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F. Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 2008;24:4114–4119.10.1021/la703821h
  • Park J-G, Lee S-H, Ryu J-S, Hong, Y-K, Kim T-G, Busnaina AA. Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. J. Electrochem. Soc. 2006;153:G811–G814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.