170
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental study of cohesive strain prior to crack initiation in constant force single cantilever beam test

, , , &
Pages 896-909 | Received 25 Oct 2014, Accepted 09 Jan 2015, Published online: 16 Feb 2015

References

  • Fernlund G, Spelt JK. Mixed-mode fracture characterization of adhesive joints. Compos. Sci. Technol. 1994;50:441–449.10.1016/0266-3538(94)90052-3
  • Banea MD, Silva LD, Campilho RDSG. Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive. J. Adhes. Sci. Technol. 2012;26:939–953.
  • Khalil AA, Bayoumi MR. Effect of loading rate on fracture toughness of bonded joints. Eng. Fract. Mech. 1991;39:1037–1043.10.1016/0013-7944(91)90110-M
  • Ferry JD. Viscoelastic properties of polymers. New York (NY): Wiley; 1980. ISBN 0-471-04894-1.
  • Schwarzl FR. Polymermechanik – Struktur und mechanisches Verhalten von Polymeren [Polymer Mechanics – Structure and Mechanical Behaviour of Polymers]. Berlin: Spinger-Verlag, 1990. ISBN 978-3-642-64858-8.
  • Ji G, Ouyang Z, Li G. Effects of bondline thickness on mode-II interfacial laws of bonded laminated composite plate. Int. J. Fract. 2011;168:197–207.10.1007/s10704-010-9571-9
  • Markatos DN, Tserpes KI, Rau E, Markus S, Ehrhart B, Pantelakis S. The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical use. Composites Part B. 2013;45:556–564.10.1016/j.compositesb.2012.05.052
  • Kanzow J, Schulze-Horn P, Kirschmann M, Zaporojtchenko V, Dolgner K, Faupel F, Wehlack C, Possart W. Formation of a metal/epoxy resin interface. Appl. Surf. Sci. 2005;239:227–236.10.1016/j.apsusc.2004.05.239
  • Montois P, Nassiet V, Petit JA, Baziard Y. Viscosity effect on epoxy–diamine/metal interphases. Int. J. Adhes. Adhes. 2006;26:391–399.10.1016/j.ijadhadh.2005.06.003
  • Possart W, Krüger JK, Wehlack C, Müller U, Petersen C, Bactavatchalou R, Meiser A. Formation and structure of epoxy network interphases at the contact to native metal surfaces. Comptes Rendus Chimie. 2006;9:60–79.10.1016/j.crci.2005.04.009
  • Aufray M, Roche AA. Epoxy–amine/metal interphases: influences from sharp needle-like crystal formation. Int. J. Adhes. Adhes. 2007;27:387–393.10.1016/j.ijadhadh.2006.09.009
  • Wehlack C, Possart W, Krüger JK, Müller U. Epoxy and polyurethane networks in thin films on metals—formation, structure, properties. Soft Mater. 2007;5:87–134.10.1080/15394450701554536
  • Johlitz M, Steeb H, Diebels S, Batal J, Possart W. Experimental and numerical investigation of size effects in polyurethane adhesive sealings. Techn. Mechanik. 2008;28:3–12.
  • Wehlack C. Chemische Struktur und ihre Entstehung in dünnen Epoxid- und Polyurethanschichten auf Metallen [Thin epoxy and polyurethae layers on metals – chemical structure and its formation]. Vol. 14, Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik. Aachen, Germany: Shaker Verlag; 2009.
  • Meiser A, Possart W. Epoxy-metal interphases: chemical and mechanical aging. J. Adhes. 2011;87:313–330.10.1080/00218464.2011.562105
  • Meiser A. Vernetzung und Alterung eines Epoxidklebstoffes im Kontakt mit Atmosphären und Metallen [Cross-linking and ageing of an epoxy adhesive in contact with atmospheres and metals]. Vol. 31, Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik, Aachen, Germany: Shaker Verlag; 2012.
  • Caussé N, Quiroga Cortes L, Dantras E, Tonon C, Chevalier M, Combes H, Guigue P, Lacabanne C. New bonded assembly configuration for dynamic mechanical analysis of adhesives. Int. J. Adhes. Adhes. 2013;46:1–6.10.1016/j.ijadhadh.2013.05.011
  • Krogh L, Jürgen EK, Schawe JEK, Possart W Dynamic mechanical properties of very thin adhesive joints. J. Appl. Pol. Sci. 2015, accepted.
  • Bentadjine S, Petiaud R, Roche AA, Massardier V. Organo-metallic complex characterization formed when liquid epoxy-diamine mixtures are applied onto metallic substrates. Polymer. 2001;42:6271–6282.10.1016/S0032-3861(01)00034-9
  • Roche AA, Bouchet J, Bentadjine S. Formation of epoxy-diamine/metal interphases. Int. J. Adhes. Adhes. 2002;22:431–441.10.1016/S0143-7496(02)00021-0
  • Krüger JK, Possart W, Bactavachalou R, Müller U, Britz T, Sanctuary R, Alnot P. Gradient of the mechanical modulus in glass–epoxy–metal joints as measured by Brillouin microscopy. J. Adhes. 2004;80:585–599.10.1080/00218460490476973
  • Krüger JK, Müller U, Bactavatchalou R, Liebschner D, Sander M, Possart W, Wehlack C, Baller J, Rouxel D. Mechanical interphases in epoxies as seen by non-destructive high performance Brillouin microscopy. In: Possart W, editor. Adhesion – current research and applications. Weinheim: Wiley-VCH; 2005. p. 125–142. ISBN 3-527-31263-3.
  • Johlitz M, Diebels S, Batal J, Steeb H, Possart W. Size effects in polyurethane bonds: experiments, modelling and parameter identification. J. Mater. Sci. 2008;43:4768–4779.10.1007/s10853-008-2674-2
  • Hossain M, Possart G, Steinmann P. A small-strain model to simulate the curing of thermosets. Comput. Mech. 2009;43:769–779.10.1007/s00466-008-0344-5
  • Hossain M, Possart G, Steinmann P. A finite strain framework for the simulation of polymer curing part I: elasticity. Comput. Mech. 2009;44:621–630.
  • Hossain M, Possart G, Steinmann P. A finite strain framework for the simulation of polymer curing. Part II: viscoelasticity and shrinkage. Comput. Mech. 2009;46:363–375.
  • Castagnetti D, Spaggiari A, Dragoni E. Effect of bondline thickness on the static strength of structural adhesives under nearly-homogeneous shear stresses. J. Adhes. 2011;87:780–803.10.1080/00218464.2011.597309
  • Mergheim J, Possart G, Steinmann P. Modelling and computation of curing and damage of thermosets. Comput. Mech. 2012;53:359–367.
  • Possart G Mechanical interphases in adhesives: experiments, modelling and simulation. [ PhD thesis], Erlangen: Friedrich-Alexander-Universität Erlangen-Nürnberg; 2014.
  • Blackman BRK, Hadavinia H, Kinloch AJ, Paraschi M, Williams JG. The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng. Fract. Mech. 2003;70:233–248.10.1016/S0013-7944(02)00031-0
  • Sørensen BF, Jacobsen TK. Determination of cohesive laws by the J integral approach. Eng. Fract. Mech. 2003;70:1841–1858.10.1016/S0013-7944(03)00127-9
  • Fernlund G, Papini M, McCammond D, Spelt JK. Fracture load predictions for adhesive joints. Compos. Sci. Technol. 1994;51:587–600.10.1016/0266-3538(94)90091-4
  • Griffith AA The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A. 1921;221:163–198.10.1098/rsta.1921.0006
  • Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957;24:361–364.
  • Kinloch AJ. Adhesion and adhesives: science and technology. Dordrecht: Kluwer Academic Publishers; 1987.10.1007/978-94-015-7764-9
  • Evans AG, Dalgleish BJ, He M, Hutchinson JW. On crack path selection and the interface fracture energy in bimaterial systems. Acta Metall. 1989;37:3249–3254.10.1016/0001-6160(89)90197-1
  • Kysar JW. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part I: experiments and crystal plasticity background. J. Mech. Phys. Solids. 2001;49:1099–1128.10.1016/S0022-5096(00)00072-7
  • Kysar JW. Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part II: crack tip stress/deformation analysis. J. Mech. Phys. Solids. 2001;49:1129–1153.10.1016/S0022-5096(00)00071-5
  • Rice J. Mathematical analysis in the mechanics of fracture. London: Academic Press; 1968.
  • Gross D, Seelig T. Bruchmechanik. 5th ed. Heidelberg: Springer; 2011. p. 175.10.1007/978-3-642-10196-0
  • Fraisse P, Schmit F. Use of J-integral as fracture parameter in simplified analysis of bonded joints. Int. J. Fract. 1993;63:59–73.10.1007/BF00053316
  • Rice JR, Riedel H. Tensile cracks in creeping solids. West Conshohocken, PA: ASTM STP 700; 1980. p. 112–130.
  • Riedel H, Wagner W The growth of macroscopic cracks in creeping materials. 5th International Conference on Fracture 1981. Cannes, France;5:683–690.
  • Ohji K, Ogura K, Kubo S. Stress–strain fields and modified J-integral in the vicinity of the crack tip under transient creep conditions. Jap. Soc. Mech. Eng. 1979;790–13:18–20.
  • Landes JD, Begley JA. The J-integral as a fracture criterion. West Conshohocken, PA: ASTM STP 590; 1976. p. 128–148.
  • Ji SS, Genin GM, Paris PC, Berkel TR, Rubin AM. Polymer/metal interfacial crack growth characterized by C*. Int. J. Fract. 2004;129:63–73.10.1023/B:FRAC.0000038908.73873.ac
  • Schapery RA. A theory of crack initiation and growth in viscoelastic media. Int. J. Fract. 1975;11:141–159.10.1007/BF00034721
  • Schapery RA. On some path independent integrals and their use in fracture of nonlinear viscoelastic media. Int. J. Fract. 1990;42:189–207.10.1007/BF00018386
  • Gamby D, Delauménie V. Measurement and modelling of crack propagation velocity in a viscoelastic matrix composite. Composites Part A. 1997;28:875–881.10.1016/S1359-835X(97)00054-7
  • Plausinis D, Spelt JK. Designing for time-dependent crack growth in adhesive joints. Int. J. Adh. Adhes. 1995;15:143–154.10.1016/0143-7496(95)91625-G
  • Gent AN, Petrich RP. Adhesion of viscoelastic materials to rigid substrates. Proc. R. Soc. London, Ser. A. 1969;310:433–448.10.1098/rspa.1969.0085
  • Bažant ZP, Li Y-N. Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. Int. J. Fract. 1997;86:247–265.10.1023/A:1007486221395
  • Li Y-N, Bažant ZP. Cohesive crack model with rate-dependent opening and viscoelasticity: II. Numerical algorithm, behavior and size effect. Int. J. Fract. 1997;86:267–288.10.1023/A:1007497104557
  • Technical Data Sheet. 3M Scotch-WeldTM Epoxy Adhesive 2216 B/A. December, 2009, ©3M 2009 78-6900-9583-7 (12/09).
  • Budzik MK, Jumel J, Shanahan MER. Experimental investigation of mesoscale crack front triple line. Appl. Phys. A. 2014;114:495–501.10.1007/s00339-013-7841-x
  • Budzik MK, Jumel J, Shanahan MER. An in situ technique for the assessment of adhesive properties of a joint under load. Int. J. Fract. 2011;171:111–124.10.1007/s10704-011-9630-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.