300
Views
22
CrossRef citations to date
0
Altmetric
Articles

The effects of PHBV-g-MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour compositesFootnote

, , , , &
Pages 2061-2080 | Received 26 Sep 2015, Accepted 17 Mar 2016, Published online: 04 Apr 2016

References

  • Barkoula NM, Garkhail SK, Peijs T. Biodegradable composites based onflax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind. Crops Prod. 2010;31:34–42.10.1016/j.indcrop.2009.08.005
  • Gerard T, Budtova T. Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polymer J. 2012;48:1110–1117.10.1016/j.eurpolymj.2012.03.015
  • Zembouai I, Kaci M, Bruzaud S, et al. A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym. Test. 2013;32:842–851.10.1016/j.polymertesting.2013.04.004
  • Yu HY, Qin ZY, Yan CF, et al. Green nanocomposites based on functionalized cellulose nanocrystals: a study on the relationship between interfacial interaction and property enhancement. Sustainable Chem. Eng. 2014;2:2875–2886.
  • Long Yu. Biodegradable polymer blends and composites from renewable resources. Hoboken, NJ: John Wiley & Sons Inc., 2009. p. 437. ISBN 978-0-470-14683-5.
  • Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2:307–344.
  • Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247.10.1002/(ISSN)1097-4660
  • Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials. 1991;12:292–301.10.1016/0142-9612(91)90037-B
  • Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578.10.1016/j.biomaterials.2005.04.036
  • Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface. 2007; 4: 999–1030.10.1098/rsif.2007.0220
  • Ginty PJ, Barry JJA, White LJ, et al. Controlling protein release from scaffolds using polymer blends and composites. Eur. J. Pharm. Biopharm. 2008;68:82–89.10.1016/j.ejpb.2007.05.023
  • Ulery DB, Nair SL, Laurencin CT. Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 2011;49:832–864.10.1002/polb.22259
  • Akiyama M, Tsugea T, Doi Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 2003;80:183–194.10.1016/S0141-3910(02)00400-7
  • Hassan MA, Yee LN, Yee PL, et al. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy. 2013;50:1–9.
  • Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010;110:621–632.10.1016/j.jbiosc.2010.07.014
  • Buzarovska A, Grozdanov A, Avella M, et al. Poly(hydroxybutyrate-co-hydroxyvalerate)/titanium dioxide nanocomposites: a degradation study. J. Appl. Polym. Sci. 2009;114:3118–3124.10.1002/app.v114:5
  • Liu QS, Zhu MF, Wu WH, et al. Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym. Degrad. Stab. 2009;94:18–24.10.1016/j.polymdegradstab.2008.10.016
  • Gharbi A, Hassen RB, Boufi S. Composite materials from unsaturated polyester resin and olive nuts residue: the effect of silane treatment. Ind. Crops Prod. 2014;62:491–498.10.1016/j.indcrop.2014.09.012
  • Saviozzi A, Levi Minzi R, Cardelli R, et al. Suitability of moist olive pomace as soil amendment. Water Air Soil Pollut. 2001;128:13–22.10.1023/A:1010361807181
  • Perinovic S, Andricic B, Erceg M. Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochim. Acta. 2010;510:97–102.10.1016/j.tca.2010.07.002
  • Faruk O, Bledzki AK, Fink HP, et al. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012; 37:1552–1596. Available from: http://www.sciencedirect.com/science/journal/00796700/37/11
  • Shanks RA, Hodzic A, Wong S. Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 2004;91:2114–2121.10.1002/(ISSN)1097-4628
  • Javadi A, Srithep Y, Pilla S, et al. Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng.: C. 2010;30:749–757.10.1016/j.msec.2010.03.008
  • Srubar WV, Frank CW, Billington SL. Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Polymer. 2012;53:2152–2161.10.1016/j.polymer.2012.03.036
  • Shibata M, Takachiyo KI, Ozawa K, et al. Biodegradable polyester composites reinforced with short abaca fiber. J. Appl. Polym. Sci. 2002;85:129–138.10.1002/(ISSN)1097-4628
  • Wu CS. Assessing biodegradability and mechanical, thermal, and morphological properties of an acrylic acid-modified poly(3-hydroxybutyric acid)/wood flours biocomposite. J. Appl. Polym. Sci. 2006;102:3565–3574.10.1002/(ISSN)1097-4628
  • Wong S, Shanks R, Hodzic Al. Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Compos. Sci. Technol. 2004;64:1321–1330.10.1016/j.compscitech.2003.10.012
  • Avella M, Gaceva GB, Buzarovska A, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based biocompositesreinforced with kenaf fibers. J. Appl. Polym. Sci. 2007;104:3192–3200.10.1002/(ISSN)1097-4628
  • Salim YS, Abdullah AAA, Sipaut CS, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and characterisation of its blend with oil palm empty fruit bunch fibers. Bioresour. Technol. 2011;102:3626–3628.10.1016/j.biortech.2010.11.020
  • Jiang L, Huang J, Qian J, et al. Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J. Polym. Environ. 2008;16:83–93.10.1007/s10924-008-0086-7
  • Dufresne A, Dupeyre D, Paillet M. Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. J. Appl. Polym. Sci. 2003;87:1302–1315.10.1002/app.11546
  • Berthet MA, Hélène AC, Machado D, et al. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind. Crops Prod. 2015;69:110–122.10.1016/j.indcrop.2015.01.028
  • Satyanarayana KG, Arizaga GGC, Wypych F. Biodegradable composites based on lignocellulosic fibers – an overview. Prog. Polym. Sci. 2009;34:982–1021.10.1016/j.progpolymsci.2008.12.002
  • Deroiné M, Le Duigou A, Corre YM, et al. Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water. Polym. Test. 2014;39:70–78.10.1016/j.polymertesting.2014.07.018
  • Kaci M, Cimmino S, Silvestre C, et al. Ethylene butyl acrylate glycidyl methacrylate terpolymer as an interfacial agent for isotactic poly(propylene)/wood flour composites. Macromol. Mater. Eng. 2006;291:869–876.10.1002/(ISSN)1439-2054
  • Chen C, Fei B, Peng S, et al. Synthesis and characterization of maleated poly(3-hydroxybutyrate). J. Appl. Polym. Sci. 2003;88:659–668.10.1002/(ISSN)1097-4628
  • Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747.10.1002/app.1969.070130815
  • Baley C, Busnel F, Grohens Y, et al. Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos. Part A: Appl. Sci. Manuf. 2006;37:1626–1637.10.1016/j.compositesa.2005.10.014
  • Rudawska A, Jacniacka E. Analysis for determining surface free energy uncertainty by the Owen-Wendt method. Int. J. Adhes. Adhes. 2009;29:451–457.10.1016/j.ijadhadh.2008.09.008
  • Jamshidian M, Tehrany EA, Imran M, et al. Structural, mechanical and barrier properties of active PLA-antioxidant films. J. Food Eng. 2012;110:380–389.10.1016/j.jfoodeng.2011.12.034
  • Kaci M, Djidjelli H, Boukerrou A, et al. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites. Express. Polym. Lett. 2007;7:467–473.10.3144/expresspolymlett.2007.65
  • Boukerrou A, Krim S, Djidjelli H, et al. Study and characterization of composites materials based on polypropylene loaded with olive husk flour. J. Appl. Polym. Sci. 2011;122:1382–1394.
  • Hameed N, Guo Q, Tay FH, et al. Blends of cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) prepared from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr. Polym. 2011;86:94–104.10.1016/j.carbpol.2011.04.016
  • Rosa SML, Santos EF, Ferreira CA, et al. Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Mater. Res. 2009;12:333–338.10.1590/S1516-14392009000300014
  • Hamma A, Kaci M, Pegoretti A. Polypropylene/date stone flour composites: Effects of filler contentsand EBAGMA compatibilizer on morphology, thermal, and mechanical properties. J. Appl. Polym. Sci. 2013;128:4314–4321.10.1002/app.v128.6
  • Mohanty S, Verma SK, Nayak SK. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 2006;66:538–547.10.1016/j.compscitech.2005.06.014
  • Jose JK. Xyloglucan-based polymers and nanocomposites – modification, properties and barrier film applications [Doctoral Thesis]. Stockholm: KTH, Royal Institute of Technology; 2012; ISBN 978-91-7501-528-6.
  • Srubar WV, Frank CW, Billington SL. Modeling the kinetics of water transport and hydroexpansion in a lignocellulose-reinforced bacterial copolyester. Polymer. 2012;53:2152–2161.10.1016/j.polymer.2012.03.036
  • Brody AL, Bugusu B, Han JH, et al. Innovative food packaging solutions. J. Food Sci. 2008;73:107–116.10.1111/jfds.2008.73.issue-8
  • Wang H, Chang R, Sheng KC, et al. Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (PVC). J. Bionic Eng. 2008;5:28–33.10.1016/S1672-6529(08)60068-2
  • Boufi S, Abdelmouleh M, Belgacem MN, et al. Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 2007;67:1627–1639.
  • Elesini US, Cuden AP, Richards AF. Study of the green cotton fibres. Acta. Chim. Slov. 2002;49:815–833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.