241
Views
3
CrossRef citations to date
0
Altmetric
Articles

Controlled fabrication and electrowetting properties of silicon nanostructures

, , &
Pages 31-40 | Received 25 Dec 2015, Accepted 29 May 2016, Published online: 24 Jun 2016

References

  • Xiu Y, Zhu L, Hess DW, et al. Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 2007;7:3388–3393.10.1021/nl0717457
  • Krupenkin TN, Taylor JA, Schneider TM, et al. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir. 2004;20:3824–3827.10.1021/la036093q
  • Krupenkin TN, Taylor JA, Wang EN, et al. Reversible wetting−dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. Langmuir. 2007;23:9128–9133.10.1021/la7008557
  • Verho T, Bower C, Andrew P, et al. Mechanically durable superhydrophobic surfaces. Adv. Mater. 2011;23:673–678.10.1002/adma.201003129
  • Han W, Wu D, Ming W, et al. Direct catalytic route to superhydrophobic polyethylene films. Langmuir. 2006;22:7956–7959.10.1021/la061414u
  • Jin M, Feng X, Feng L, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 2005;17:1977–1981.10.1002/(ISSN)1521-4095
  • Ji J, Fu J, Shen J. Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer. Adv. Mater. 2006;18:1441–1444.10.1002/(ISSN)1521-4095
  • Tadanaga K, Katata N, Minami T. Super-water-repellent Al2O3 coating films with high transparency. J. Am. Ceram. Soc. 1997;80:1040–1042.
  • Tadanaga K, Morinaga J, Minami T. Formation of superhydrophobic-superhydrophilic pattern on flower like alumina thin film by the sol-gel method. J. Sol-Gel. Sci. Technol. 2000;19:211–214.10.1023/A:1008732204421
  • Cao A, Cao L, Gao D, Fabrication of non-aging superhydrophobic surfaces by packing flower-like hematite particles. APS March Meeting Abstracts.  2008; 1: 8009.
  • Yan B, Tao J, Pang C, et al. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film. Langmuir. 2008;24:10569–10571.10.1021/la801900r
  • Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 2004;126:62–63.10.1021/ja038636o
  • Li M, Zhai J, Liu H, et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J. Phys. Chem. B. 2003;107:9954–9957.10.1021/jp035562u
  • Wu X, Zheng L, Wu D. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir. 2005;21:2665–2667.10.1021/la050275y
  • Li J, Liu X, Ye Y, et al. Fabrication of superhydrophobic CuO surfaces with tunable water adhesion. J. Phys. Chem. C. 2011;115:4726–4729.10.1021/jp111296n
  • Xiao F, Yuan S, Liang B, et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion. J. Mater. Chem. A. 2015;3:4374–4388.10.1039/C4TA05730A
  • Baldacchini T, Carey JE, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir. 2006;22:4917–4919.10.1021/la053374k
  • Cao L, Price TP, Weiss M, et al. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir. 2008;24:1640–1643.10.1021/la703401f
  • Dorrer C, Rühe J. Wetting of silicon nanograss: From superhydrophilic to superhydrophobic surfaces. Adv. Mater. 2008;20:159–163.10.1002/(ISSN)1521-4095
  • Qian B, Shen Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir. 2005;21:9007–9009.10.1021/la051308c
  • Cao M, Song X, Zhai J, et al. Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J. Phys. Chem. B. 2006;110:13072–13075.10.1021/jp061373a
  • Verplanck N, Galopin E, Camart J-C, et al. Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett. 2007;7:813–817.10.1021/nl062606c
  • Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 2007;7:2633–2637.10.1021/nl071023f
  • Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25:3240–3248.10.1021/la803860d
  • Draper MC, Crick CR, Orlickaite V, et al. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Anal. Chem. 2013;85:5405–5410.10.1021/ac303786s
  • Londe G, Chunder A, Wesser A, et al. Microfluidic valves based on superhydrophobic nanostructures and switchable thermosensitive surface for lab-on-a-chip (LOC) systems. Sens. Actuat. B-Chem. 2008;132:431–438.10.1016/j.snb.2007.10.052
  • Barthlott W, Schimmel T, Wiersch S, et al. The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 2010;22:2325–2328.10.1002/adma.200904411
  • Qu Y, Liao L, Li Y, et al. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009;9:4539–4543.10.1021/nl903030h
  • Lafuma A, Quéré D. Superhydrophobic states. Nat. Mater. 2003;2:457–460.10.1038/nmat924
  • Cassie A, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546–551.10.1039/tf9444000546
  • Latthe SS, Sudhagar P, Devadoss A, et al. A mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. J. Mater. Chem. A. 2015;3:14263–14271.10.1039/C5TA02604K
  • Tuteja A, Choi W, Mabry JM, et al. Robust omniphobic surfaces. Proc. Nat. Acad. Sci. 2008;105:18200–18205.10.1073/pnas.0804872105
  • Rajkumar K, Rajendra Kumar R. T. Fabrication and electrowetting properties of poly Si nanostructure based superhydrophobic platform. Plasma Chem. Plasma Process. 2013;33:807–816.10.1007/s11090-013-9462-8
  • Srinivasan V, Pamula VK, Fair RB. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip. 2004;4:310–315.10.1039/b403341h
  • Kuiper S, Hendriks B. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 2004;85:1128–1130.10.1063/1.1779954
  • Cho SK, Moon H, Kim C-J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 2003;12:70–80.
  • Cahill BP, Giannitsis AT, Land R, et al. Reversible electrowetting on silanized silicon nitride. Sens. Actuat. B-Chem. 2010;144:380–386.10.1016/j.snb.2008.12.041
  • Rajendra Kumar RT. Mogensen KB, Bøggild P. Simple approach to superamphiphobic overhanging silicon nanostructures. J. Phys. Chem. C. 2010;114:2936–2940.
  • Peng K, Hu J, Yan Y, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006;16:387–394.10.1002/(ISSN)1616-3028
  • Fang H, Wu Y, Zhao J, et al. Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology. 2006;17:3768–3774.10.1088/0957-4484/17/15/026
  • Hochbaum AI, Gargas D, Hwang YJ, et al. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009;9:3550–3554.10.1021/nl9017594
  • Kumar RT, Badel X, Vikor G, et al. Fabrication of silicon dioxide nanocapillary arrays for guiding highly charged ions. Nanotechnology. 2005;16:1697–1700.10.1088/0957-4484/16/9/048
  • Badel X, Kumar RR, Kleimann P, et al. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon. Superlattices Microstruct. 2004;36:245–253.10.1016/j.spmi.2004.08.037
  • Rai B, Srivastava R. Mobile ion instability in SiO2 films on silicon. Int. J. Electron. 1979;46:381–392.10.1080/00207217908901016
  • Williams C, Hamaker R, Ganesan S, et al. Low temperature diffusion of alkali earth cations in thin, vitreous SiO2 films. J. Electrochem. Soc. 1995;142:303–311.10.1149/1.2043915

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.