100
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sol-gel synthesis and antibacterial study on BC/ZnO/TiO2 nanocomposite treated by DC glow discharge plasma

, &
Pages 1075-1086 | Received 25 Apr 2016, Accepted 29 Sep 2016, Published online: 10 Oct 2016

References

  • Vignesh K, Vijayalakshmi KA, Karthikeyan N. Impact of plasma surface treatment on bamboo charcoal/silver nanocomposite. Surf Rev Lett. 2016;23:15500189-6 p.
  • Liao P, Ismae ZM, Zhan W, et al. Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal. Chem Eng J. 2012;195–196:339–346.10.1016/j.cej.2012.04.092
  • Fan Y, Wang B, Yuan S, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour Technol. 2010;101:7661–7664.10.1016/j.biortech.2010.04.046
  • Okabe T, Saito K. Advanced materials 93, V/A: Ecomaterials, Japan. 1994:681.
  • Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol. 2004;95:255–257.10.1016/j.biortech.2004.02.015
  • Abe I, Fukuhara T, Maruyama J, et al. Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon. 2001;39:1069–1073.10.1016/S0008-6223(00)00230-X
  • Sokolov Vyacheslav I. The fullerenes-new allotropic forms of carbon: molecular and electronic structure, and chemical properties. Russ Chem Rev. 1993;62:419.10.1070/RC1993v062n05ABEH000025
  • Kang S, Herzberg M, Rodrigues DF, et al. Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 2008;24:6409–6413.10.1021/la800951v
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17-71.
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.10.1016/j.tibtech.2012.06.004
  • Gurunathan S, Han JW, Dayem AA, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed. 2012;7:5901–5914.10.2147/IJN
  • Shvedova AA, Pietroiusti A, Fadeel B, et al. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261:121–133.10.1016/j.taap.2012.03.023
  • Vecitis CD, Zodrow KR, Kang S, et al. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano. 2010;4:5471–5479.10.1021/nn101558x
  • Pacurar M, Qian Y, Fu W, et al. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A. 2012;75:129–147.
  • Kang S, Pinault M, Pfefferle LD, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007;23:8670–8673.10.1021/la701067r
  • Yang C, Mamouni J, Tang Y, et al. Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir. 2010;26:16013–16019.10.1021/la103110g
  • Murray AR, Kisin ER, Tkach AV, et al. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 2012;9:9–10.
  • Adibkia K, Omidi Y, Siahi MR, et al. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther. 2007;23:21–432.
  • Tiwari PM, Vig K, Dennis VA, et al. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1:31–63.10.3390/nano1010031
  • Zinjarde SS. Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci. 2012;3:74–81.10.4103/2229-5186.94314
  • Bahrami K, Nazari P, Nabavi M, et al. Hydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus. Nanomed J. 2014;1:155–161.
  • Ravishankar Rai V, Jamuna Bai A. Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A, editor. Mysore: Formatex; 2011. p. 197–202.
  • Zhang XU, Ma Y, Lin N, et al. Microstructure, antibacterial properties and wear resistance of plasma Cu–Ni surface modified titanium. Surf Coat Technol. 2013;232:515–520.10.1016/j.surfcoat.2013.06.012
  • Emami-Karvani Z, Chehrazi P. Antibacterial activity of ZnO nanoparticle on grampositive and gram-negative bacteria. Afr J Microbiol Res. 2011;5:1368–1373.
  • Usman MS, Zowalaty ME, Shameli K, et al. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed. 2013;8:4467–4479.
  • Chen Q, Xue Y, Sun J. Kupfer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed. 2013;8:1129–1140.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720.10.1128/AEM.02218-06
  • Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Sci Eng C. 2014;45:402–410.10.1016/j.msec.2014.07.002
  • Shalaby A, Dimitriev Y. Modified sol–gel synthesis of submicron powders in the system ZnO-TiO2. J Univ Chem Technol. Metall. 2011;46:137–142.
  • Stoyanova A, Bachvarova-Nedelcheva A. Synthesis, photocatalytic and antibacterial properties of nanosized ZnTiO3 powders obtained by different sol–gel methods. Dig J Nanomater Biostruct. 2012;7:777–784.
  • Bachvarova-Nedelcheva A, Gegova R. Synthesis, characterization and properties of ZnO/TiO2 powders obtained by combustion gel method. Bulg Chem Commun. 2014;46:585–593.
  • Shalaby A, Bachvarova-Nedelcheva A. Sol–gel synthesis and properties of nanocomposites in the Ag/TiO2/ZnO system. J Optoelectron Adv Mater. 2015;17:248–256.
  • Wahab R, Mishra A, Yun SI, et al. Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol. 2010;87:1917–1925.10.1007/s00253-010-2692-2
  • Sodhi RNS. Application of surface analytical and modification techniques to biomaterial research. J Electron Spectrosc Relat Phenom. 1996;81:269–284.10.1016/0368-2048(95)02665-7
  • Boutonnet Kizling M, Järås SG. A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl Catal A. 1996;147:1–21.10.1016/S0926-860X(96)00215-3
  • Chu PK, Chen JY, Wang LP, et al. Plasma-surface modification of biomaterials. Mater Sci Eng R. 2002;36:143–206.10.1016/S0927-796X(02)00004-9
  • Riccobono PX, Rolden L. Plasma treatment of tex-tiles: a novel approach to the environmental problems of desizing. Text Chem Color. 1973;5:239–248.
  • Couto E, Tan IH, Demarquette N, et al. Oxygen plasma treatment of sisal fibers and polypropylene: effects on mechanical properties of composites. Polym Eng Sci. 2002;42:790–797.10.1002/pen.10991
  • Wang X, Wu Z, Wang Y, et al. Adsorption-photodegradation of humic acid water by ZnO coupled TiO2/bamboo charcoal under visible light. J Hazard Mater. 2013;262:16–24.
  • Alagar M, Theivasanthi T, Kubera Raja A. Chemical synthesis of nano-sized particles of lead oxide and their characterization studies. J Appl Sci. 2012;12:398–401.
  • Wang XJ, Liu YF, Hu ZH, et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J Hazard Mater. 2009;169:1061–1067.10.1016/j.jhazmat.2009.04.058
  • Yang Z, Ye Z, Xu Z, et al. Effect of the morphology on the optical properties of ZnO nanostructures. Phys E. 2009;42:116–119.10.1016/j.physe.2009.09.010
  • Ivanova T, Harizanova A, Koutzarova T, et al. Study of ZnO sol–gel films: effect of annealing. Mater Lett. 2010;64:1147–1149.10.1016/j.matlet.2010.02.033
  • Khan ZR, Khan MS, Zulfequar M, et al. Optical and structural properties of ZnO thin films fabricated by Sol–gel method. Mater Appl. 2011;2:340–345.
  • Al-Swaidan HM, Ahmad A. Synthesis and characterization of activated carbon from Saudi Arabian dates tree’s fronds wastes. Biol Environ Eng. 2011;20:25–31.
  • Vijayalakshmi KA, Vignesh K, Karthikeyan N. Synthesis and surface characterisation of bamboo charcoal carbon using low temperature plasma treatment. Mater Technol. 2015;30:99–A103.
  • Vignesh K, Vijayalakshmi KA, Karthikeyan N. Preparation and characterisation of bamboo charcoal/titanium dioxide (BC/TiO2) nanocomposite with plasma surface treatment. Mater Technol. 2015;30:A104–A108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.