482
Views
16
CrossRef citations to date
0
Altmetric
Articles

Influence of graphene nanoplatelets (GNPs) on mode I fracture toughness of an epoxy adhesive under thermal fatigue

&
Pages 2105-2123 | Received 21 Jun 2016, Accepted 20 Nov 2016, Published online: 20 Dec 2016

References

  • He X. A review of finite element analysis of adhesively bonded joints. Int J Adhes Adhes. 2011;31:248–264.10.1016/j.ijadhadh.2011.01.006
  • Domun N, Hadavinia H, Zhang T, et al. Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale. 2015;7:10294–10329.10.1039/C5NR01354B
  • Bernardo LF, Amaro AP, Pinto DG, et al. Modeling and simulation techniques for polymer nanoparticle composites – a review. Comput Mater Sci. 2016;118:32–46.10.1016/j.commatsci.2016.02.025
  • Shadlou S, Ahmadi-Moghadam B, Taheri F. Nano-enhanced adhesives. Rev Adhes Adhes. 2014;2:371–412.10.7569/RAA.2014.097307
  • Manjunatha C, Chandra AA, Jagannathan N. Fracture and fatigue behavior of polymer nanocomposites – a review. J Indian Inst Sci. 2015;95:249–266.
  • Kamar NT, Hossain MM, Khomenko A, et al. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Composites Part A: Appl Sci Manuf. 2015;70:82–92.10.1016/j.compositesa.2014.12.010
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.10.1038/nmat1849
  • Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer. 2004;45:8211–8219.10.1016/j.polymer.2004.09.054
  • Geng Y, Wang SJ, Kim J-K. Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci. 2009;336:592–598.10.1016/j.jcis.2009.04.005
  • Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, et al. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des. 2015;66:142–149.10.1016/j.matdes.2014.10.047
  • Ahmadi-Moghadam B, Taheri F. Fracture and toughening mechanisms of GNP-based nanocomposites in modes I and II fracture. Eng Fract Mech. 2014;131:329–339.10.1016/j.engfracmech.2014.08.008
  • Billaudeau E. Mechanical behavior of polyurea nanocomposites doped with nanoparticles. Ecole Centrale Lyon, Lyon, France; September 2010.
  • Shokrieh M, Ghoreishi S, Esmkhani M, et al. Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue Fract Eng Mater Struct. 2014;37:1116–1123.10.1111/ffe.v37.10
  • Carden A. Thermal fatigue – an analysis of the experimental method. TN: Oak Ridge National Lab; 1963.
  • Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100–104.10.1016/0022-5096(60)90013-2
  • Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 1962;7:55–129.10.1016/S0065-2156(08)70121-2
  • Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech. 1987;54:525–531.10.1115/1.3173064
  • Jiang H. Cohesive zone model for carbon nanotube adhesive simulation and fracture/fatigue crack growth. The University of Akron; 2010.
  • Safaei M, Sheidaei A, Baniassadi M, et al. An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites. Comput Mater Sci. 2015;96:191–199.10.1016/j.commatsci.2014.08.036
  • Jia YY, Yan WY. Numerical modeling of graphene/polymer interfacial behaviour using peel test. Adv Mater Res. 2014;891–892: 1119.
  • Borowski E, Soliman E, Kandil UF, et al. Interlaminar fracture toughness of CFRP laminates incorporating multi-walled carbon nanotubes. Polymers. 2015;7:1020–1045.10.3390/polym7061020
  • Ahmadi-Moghadam B, Taheri F. Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci. 2014;49:6180–6190.10.1007/s10853-014-8332-y
  • Soltannia B, Taheri F. Influence of nano-reinforcement on the mechanical behavior of adhesively-bonded single-lap joints subjected to static, quasi-static and impact loading. J Adhes Sci Technol. 2014;29(5):424–442.
  • Bardis JD, Kedward KT. Surface preparation effects on mode I testing of adhesively bonded composite joints. ASTM J Compos Technol Res (USA). 2002;24:30–37.
  • Johnson W, Butkus L. Considering environmental conditions in the design of bonded structures: a fracture mechanics approach. Fatigue Fract Eng Mater Struct. 1998;21:465–478.
  • Broughton W, Mera R, Hinopoulos G. Cyclic fatigue testing of adhesive joints: environmental effects. NPL Report CMMT (A). 1999;192.
  • ASTM. ASTM D5528-13, Standar test method for mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. West Conshohocken (PA): ASTM international; 2013.
  • Shen M-Y, Chang T-Y, Hsieh T-H, et al. Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater. 2013;2013:9, Article ID 565401. doi: 10.1155/2013/565401.
  • ABAQUS User Manual. Version 6.10, 2010. Providence (RI): Dassault Systèmes Simulia Corp; 2010.
  • Alfano G. On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol. 2006;66:723–730.
  • Liu PF, Gu ZP, Peng XQ, et al. Finite element analysis of the influence of cohesive law parameters on the multiple de1amination behaviors of composites under compression. Compos Struct. 2015;131:975–986.
  • Benzeggagh M, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol. 1996;56:439–449.10.1016/0266-3538(96)00005-X
  • Kenane M, Benzeggagh M. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading. Compos Sci Technol. 1997;57:597–605.10.1016/S0266-3538(97)00021-3
  • Sugiman S, Crocombe A, Aschroft I. Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints. Int J Adhes Adhes. 2013;40:224–237.10.1016/j.ijadhadh.2012.08.007
  • Sugiman S, Crocombe A, Aschroft I. The fatigue response of environmentally degraded adhesively bonded aluminium structures. Int J Adhes Adhes. 2013;41:80–91.10.1016/j.ijadhadh.2012.10.003
  • Sugiman S, Crocombe A, Aschroft I. Modelling the static response of unaged adhesively bonded structures. Eng Fract Mech. 2013;98:296–314.10.1016/j.engfracmech.2012.10.014
  • Yang Q, Shim D, Spearing S. A cohesive zone model for low cycle fatigue life prediction of solder joints. Microelectron Eng. 2004;75:85–95.10.1016/j.mee.2003.11.009
  • Du Z-Z, Wang J, Fan X. Direct cyclic method for solder joint reliability analysis. 2006.
  • Maitournam H, Pommier B, Comte F, et al. Direct cyclic methods for structures under thermomechanical loading. European Conference on Computational Mechanics (ECCM 2010), May 2010, Paris, France.
  • Hu P, Shi Z, Wang X, et al. Strength degradation of adhesively bonded single-lap joints in a cyclic-temperature environment using a cohesive zone model. J Adhes. 2015;91:587–603.10.1080/00218464.2014.915754

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.