228
Views
4
CrossRef citations to date
0
Altmetric
Articles

Simulation and experiments on the capillary forces between two continuously fully wet circular disks

, , &
Pages 908-919 | Received 26 Jul 2017, Accepted 28 Sep 2017, Published online: 09 Oct 2017

References

  • Hwang KS, German RM, Lenel FV. Capillary forces between spheres during agglomeration and liquid phase sintering. Metall Trans. 1986;18:11–17.
  • Martinez I. Liquid bridge analysis of silicon crystal growth experiments under microgravity. J Cryst Growth. 1986;75:535–544.10.1016/0022-0248(86)90099-0
  • Lin SP, Reitz RD. Drop And Spray Formation From A Liquid Jet. Ann Rev Fluid Mech. 1998;30:85–105.10.1146/annurev.fluid.30.1.85
  • Tas NR, Gui C, Elwenspoek M. Static friction in elastic adhesion contacts in MEMS. J Adhes Sci Technol. 2003;17:547–561.10.1163/15685610360554401
  • Zhao Y-P, Wang LS, Yu TX. Mechanics of adhesion in MEMS-a review. J Adhes Sci Technol. 2003;17:519–546.
  • Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philos T R Soc B. 2015;370:20140027.
  • Zhang X, Yi X, Ahmed SI-U, et al. Dynamic contact model based on meniscus adhesion for wet bio-adhesive pads: simulation and experiments. Tribol T. 2010;53:280–287.10.1080/10402000903402678
  • Favi PM, Yi S, Lenaghan SC, et al. Inspiration from the natural world: from bio-adhesives to bio-inspired adhesives. J Adhes Sci Technol. 2014;28:290–319.10.1080/01694243.2012.691809
  • Berthier J, Brakke K, Grossi F, et al. Self-alignment of silicon chips on wafers: a capillary approach. J Appl Phys. 2010;108:054905.10.1063/1.3466782
  • Mastrangeli M, Ruythooren W, Celis J-P, et al. Challgenges for capillary self-assembly of microsystems. IEEE T Comp Pack Man. 2011;1:133–149.
  • Tachibana H, Saito M, Tsuji K, et al. Self-propelled continuous-flow PCR in capillary-driven microfluidic device: microfluidic behavior and DNA amplification. Sensors Actuat B-Chem. 2015;206:303–310.10.1016/j.snb.2014.09.004
  • Chen J, Wang C, Wei N, et al. 3D flexible water channel: stretchability of nanoscale water bridge. Nanoscale. 2016;8:5676–5681.10.1039/C5NR08072 J
  • Sun G, Liu T, Sen P, et al. Electrostatic side-drive rotary stage on liquid-ring bearing. J Microelectromech S. 2014;23:147–156.10.1109/JMEMS.2013.2262592
  • Takei A, Matsumoto K, Shimoyama I. Capillary torque caused by a liquid droplet sandwiched between two plates. Langmuir. 2010;26:2497–2504.10.1021/la902779 g
  • Yoxall BE, Chan ML, Harake RS, et al. Rotary liquid droplet microbearing. J Microelectromech S. 2012;21:721–729.10.1109/JMEMS.2012.2185218
  • Carter WC. The forces and behavior of fluids constrained by solids. Acta Metall. 1988;36:2283–2292.10.1016/0001-6160(88)90328-8
  • Fortes MA. Axisymmetric liquid bridges between parallel plates. J Colloid Interf Sci. 1982;88:338–352.10.1016/0021-9797(82)90263-6
  • De Souza EJ, Brinkmann M, Mohrdieck C, et al. Capillary forces between chemically different substrates. Langmuir. 2008;24:10161–10168.10.1021/la800680n
  • Wang Y, Michielsen S, Lee HJ. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface. Langmuir. 2013;29:11028–11037.10.1021/la401324f
  • Chen H, Amirfazli A, Tang T. Modeling liquid bridge between surfaces with contact angle hysteresis. Langmuir. 2013;29:3310–3319.10.1021/la304870 h
  • Gillette RD, Dyson DC. Stability of fluid interfaces of revolution between equal solid circular plates. Chem Eng J. 1971;2:44–54.10.1016/0300-9467(71)87006-5
  • Qian J, Gao H. Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2006;2:51–58.10.1016/j.actbio.2005.08.005
  • Qian B, Breuer KS. The motion, stability and breakup of a stretching liquid bridge with a receding contact line. J Fluid Mech. 2011;666:554–572.10.1017/S0022112010004611
  • Broesch DJ, Frechette J. From concave to convex: capillary bridges in slit pore geometry. Langmuir. 2012;28:15548–15554.10.1021/la302942 k
  • Chau A, Rignier S, Delchambre A, et al. Three-dimensional model for capillary nanobridges and capillary forces. Model Simul Mater Sci. 2007;15:305–317.10.1088/0965-0393/15/3/009
  • Niu J, Wang X, Yu Y. Rupture distance of the liquid bridge between two flat substrates with different wetting properties. J Compu Theor Nanos. 2014;11:625–628.10.1166/jctn.2014.3404
  • Lian G, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interf Sci. 1993;161:138–147.10.1006/jcis.1993.1452
  • Bormashenko E, Musin A, Zinigrad M. Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line. Colloid Surf A. 2011;385:235–240.10.1016/j.colsurfa.2011.06.016
  • Bormashenko E, Musin A, Whyman G, et al. Wetting transitions and depinning of the triple line. Langmuir. 2012;28:3460–3464.10.1021/la204424n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.