251
Views
24
CrossRef citations to date
0
Altmetric
Articles

Effect of vegetable and synthetic fibers on mechanical performance and durability of Metakaolin-based mortars

, , , &
Pages 1670-1686 | Received 11 Oct 2017, Accepted 07 Feb 2018, Published online: 22 Feb 2018

References

  • Ali M, Li X, Chouw N. Experimental investigations on bond strength between coconut fibre and concrete. Mater Des. 2013;44:596–605.10.1016/j.matdes.2012.08.038
  • Ramli M, Kwan WH, Abas NF. Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Constr Build Mater. 2013;38:554–566.10.1016/j.conbuildmat.2012.09.002
  • Ding Y, Azevedo C, Aguiar JB, et al. Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature. Constr Building Mater. 2012;26(1):21–31.
  • Toledo Filho RD, Ghavami K, Sanjuán MA, et al. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibers. Cem Concr Compos. 2005;27(5):537–546.10.1016/j.cemconcomp.2004.09.005
  • Ding Y, Zhang Y, Thomas A. The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete. Constr Build Mater. 2009;23(1):448–452.10.1016/j.conbuildmat.2007.11.006
  • As’ad S, Gunawan P, Alaydrus MS. Fresh state behavior of self compacting concrete containing waste material fibres. Procedia Engineering. 2011;14:797–804.10.1016/j.proeng.2011.07.101
  • Denzin Tonoli GH, de Souza Almeida AEF, Pereira-da-Silva MA, et al. Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites. Holzforschung. 2010;64(5):595–601.
  • Wei J, Meyer C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem Concr Res. 2015;73:1–16.10.1016/j.cemconres.2015.02.019
  • Di Bella G, Fiore V, Galtieri G, et al. Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Constr Build Mater. 2014;58:159–165.10.1016/j.conbuildmat.2014.02.026
  • Yan L, Kasal B, Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B: Eng. 2016;92:94–132.10.1016/j.compositesb.2016.02.002
  • Wei J, Meyer C. Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber. Cem Concr Res. 2016;81:94–111.10.1016/j.cemconres.2015.12.001
  • Mármol G, Savastano H, Monzó JM, et al. Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Constr Build Mater. 2016;124:208–218.10.1016/j.conbuildmat.2016.07.083
  • Wei J, Ma S, D’Shawn GT, et al. Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corros Sci. 2016;106:1–15.10.1016/j.corsci.2016.01.020
  • Ardanuy M, Claramunt J, Toledo RD. Filho. Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater. 2015;79:115–128.10.1016/j.conbuildmat.2015.01.035
  • de Andrade Silva F, Toledo Filho RD, de Almeida MeloFilho J, et al. Physical and mechanical properties of durable sisal fiber–cement composites. Constr Build Mater. 2010;24(5):777–785.10.1016/j.conbuildmat.2009.10.030
  • de Andrade Silva F, Mobasher B. R Dias ToledoFilho. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cem Concr Compos. 2009;31(10):721–730.10.1016/j.cemconcomp.2009.07.004
  • Ahmed SA. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns. Ain Shams Eng J. 2013;4(2):155–161.10.1016/j.asej.2012.08.006
  • Awwad E, Mabsout M, Hamad B, et al. Studies on fiber-reinforced concrete using industrial hemp fibers. Constr Build Mater. 2012;35:710–717.10.1016/j.conbuildmat.2012.04.119
  • Agoudjil B, Benchabane A, Boudenne A, et al. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build. 2011;43(2):491–497.10.1016/j.enbuild.2010.10.014
  • Pinto J, Paiva A, Varum H, et al. Corn’s cob as a potential ecological thermal insulation material. Energy Build. 2011;43(8):1985–1990.10.1016/j.enbuild.2011.04.004
  • Raut AN, Gomez CP. Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Constr Build Mater. 2016;126:476–483.10.1016/j.conbuildmat.2016.09.034
  • Benmansour N, Agoudjil B, Gherabli A, et al. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014;81:98–104.10.1016/j.enbuild.2014.05.032
  • Mo KH, Bong CS, Alengaram UJ, et al. Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Constr Build Mater. 2017;130:113–121.10.1016/j.conbuildmat.2016.11.005
  • Alengaram UJ, Al Muhit BA, bin Jumaat MZ, et al. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mater Des. 2013;51:522–529.10.1016/j.matdes.2013.04.078
  • Ashraf W. Carbonation of cement-based materials: Challenges and opportunities. Const Build Mater. 2016;120:558–570.10.1016/j.conbuildmat.2016.05.080
  • Pu Q, Jiang L, Xu J, et al. Evolution of pH and chemical composition of pore solution in carbonated concrete. Constr Build Mater. 2012;28(1):519–524.10.1016/j.conbuildmat.2011.09.006
  • Pizzol VD, Mendes LM, Savastano H, et al. Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites. Constr Build Mater. 2014;68:750–756.10.1016/j.conbuildmat.2014.06.055
  • Tonoli GHD, Santos SF, Joaquim AP, et al. Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr Build Mater. 2010;24(2):193–201.10.1016/j.conbuildmat.2007.11.018
  • Kriker A, Debicki G, Bali A, et al. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem Concr Compos. 2005;27(5):554–564.10.1016/j.cemconcomp.2004.09.015
  • Sellami A, Merzoud M, Amziane S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr Build Mater. 2013;47:1117–1124.10.1016/j.conbuildmat.2013.05.073
  • Rogge E. Extraction et étude des propriétés physiques et mécaniques des fibres d’Alfa (Esparto grass) en vue d’applications textiles. Mémoire de master, Ecole Nationale Supérieure d’Ingénieurs Sud-Alsace; 2010.
  • XP P18-458 Essai pour béton durci - Essai de carbonatation accélérée - Mesure de l’épaisseur de béton carbonaté. Novembre 2008.
  • NF P18-459 Béton - Essai pour béton durci - Essai de porosité et de masse volumique. Mars 2010.
  • Banthia N, Sheng J. Fracture toughness of micro-fiber reinforced cement composites. Cem Concr Compos. 1996;18(4):251–269.10.1016/0958-9465(95)00030-5
  • Laifa W, Behim M, Turatsinze A, et al. Caractérisation d’un béton autoplaçant avec addition de laitier cristallisé et renforcé par des fibres de polypropylène et de diss. Synthèse: Revue des Sciences et de la Technologie. 2014;29(1):100–110.
  • da Silva FG, Helene P, Castro-Borges P, et al. Sources of variations when comparing concrete carbonation results. J Mater Civil Eng. 2009;21(7):333–342.10.1061/(ASCE)0899-1561(2009)21:7(333)
  • Zhang P, Li Q. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos Part B: Eng. 2013;45(1):1587–1594.10.1016/j.compositesb.2012.10.006
  • Shi H, Xu B, Zhou X. Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater. 2009;23(5):1980–1985.10.1016/j.conbuildmat.2008.08.021
  • Noumowe A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 C. Cem Concr Res. 2005;35(11):2192–2198.10.1016/j.cemconres.2005.03.007
  • Shatat MR. Hydration behavior and mechanical properties of blended cement containing various amounts of rice husk ash in presence of metakaolin. Arabian J Chem. 2016;9:1869–1874.10.1016/j.arabjc.2013.12.006
  • Saillio  M. Interactions physico-chimiques ions-matrice dans les bétons sains ou carbonatés: influence sur le transport ionique. Doctorate thesis from the University Paris-Est-Marne La Vallee; 2012.
  • Almeida A, Tonoli GHD, Santos SF. Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem Concr Compos. 2013;42:49–58.10.1016/j.cemconcomp.2013.05.001
  • Rostami V, Shao Y, Boyd AJ, et al. Microstructure of cement paste subject to early carbonation curing. Cem Concr Res. 2012;42(1):186–193.10.1016/j.cemconres.2011.09.010
  • Sedan D, Pagnoux C, Smith A. Propriétés mécaniques de matériaux enchevêtrés à base de fibre de chanvre et matrice cimentaire. 18ème Congrès Français de Mécanique (Grenoble 2007); 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.