57
Views
4
CrossRef citations to date
0
Altmetric
Articles

Characterization of stem phoenix fibres as potential reinforcement of self compacting mortar

ORCID Icon, , &
Pages 1629-1642 | Received 08 Nov 2017, Accepted 10 Feb 2018, Published online: 22 Feb 2018

References

  • Ferrara L, Park Y-D, Shah SP. A method for mix-design of fiber-reinforced self-compacting concrete. Cem Conc Res. 2007;37:957–971.10.1016/j.cemconres.2007.03.014
  • Okamura H, Ouchi M. Self-compacting concrete. J Adv Conc Technol. 2003;1:5–15.10.3151/jact.1.5
  • EFNARC S. Guidelines for self-compacting concrete. EFNARC, UK; 2002; p. 1–32. www.efnarc.org.
  • ACI.Committee 237. Self-Consolidating Concrete ( ACI 237R-04); 2007.
  • Okamura H, Ozawa K. Mix design for self-compacting concrete. Conc Lib JSCE. 1995;25:107–120.
  • Amjadi R, Monazami M, Mohseni E, et al. Effectiveness of different recycled materials in self-compacting mortar. Eur J Environ Civil Eng. 2017;21:1485–1501.
  • Tuyan M, Mardani-Aghabaglou A, Ramyar K. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater Design. 2014;53:983–991.10.1016/j.matdes.2013.07.100
  • Khelifa MR, Guessasma S. New Computational Model Based on Finite Element Method to Quantify Damage Evolution Due to External Sulfate Attack on Self-Compacting Concretes. Computer-Aid Civil Infrastruc Eng. 2013;28:260–272.10.1111/mice.2013.28.issue-4
  • Mostefai N, Hamzaoui R, Guessasma S, et al. Microstructure and mechanical performance of modified hemp fibre and shiv mortars: discovering the optimal formulation. Mater Design. 2015;84:359–371.10.1016/j.matdes.2015.06.102
  • Fiore V, Scalici T, Valenza A. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym. 2014;106:77–83.10.1016/j.carbpol.2014.02.016
  • Mathew L, Joseph K, Joseph R. Isora fibre: morphology, chemical composition, surface modification, physical, mechanical and thermal properties – a potential natural reinforcement. J Nat Fibers. 2007;3:13–27.10.1300/J395v03n04_02
  • Sathishkumar T, Navaneethakrishnan P, Shankar S, et al. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos Interf. 2013;20:575–593.10.1080/15685543.2013.816652
  • d’Almeida J, Aquino R, Monteiro S. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos Part A Appl Sci Manufactur. 2006;37:1473–1479.10.1016/j.compositesa.2005.03.035
  • Rajeshkumar G, Hariharan V, Scalici T. Effect of NaOH treatment on properties of Phoenix sp. Fiber. J Nat Fibers. 2016;13:702–713.
  • Kriker A, Debicki G, Bali A, et al. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem Conc Compos. 2005;27:554–564.10.1016/j.cemconcomp.2004.09.015
  • Fiore V, Valenza A, Di Bella G. Artichoke (Cynaracardunculus L.) fibres as potential reinforcement of composite structures. Compos Sci Technol. 2011;71:1138–1144.10.1016/j.compscitech.2011.04.003
  • Beaugrand J, Guessasma S, Maigret J-E. Damage mechanisms in defected natural fibers. Sci Rep. 2017;7:14041.10.1038/s41598-017-14514-6
  • Hbib M, Guessasma S, Bassir D, et al. Interfacial damage in biopolymer composites reinforced using hemp fibres: Finite element simulation and experimental investigation. Compos Sci Technol. 2011;71:1419–1426.10.1016/j.compscitech.2011.05.015
  • Reddy KO, Maheswari CU, Shukla M, et al. Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng. 2013;44:433–438.10.1016/j.compositesb.2012.04.075
  • Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ. 2007;15:25–33.10.1007/s10924-006-0042-3
  • Kabir M, Wang H, Lau K, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng. 2012;43:2883–2892.10.1016/j.compositesb.2012.04.053
  • Abdelaziz S, Guessasma S, Bouaziz A, et al. Date palm spikelet in mortar: testing and modelling to reveal the mechanical performance. Construc Build Mater. 2016;124:228–236.10.1016/j.conbuildmat.2016.07.039
  • Boopathi L, Sampath P, Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos Part B Eng. 2012;43:3044–3052.10.1016/j.compositesb.2012.05.002
  • Mahjoub R, Yatim JM, Sam ARM, et al. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construc Build Mater. 2014;55:103–113.10.1016/j.conbuildmat.2014.01.036
  • Sawpan MA, Pickering KL, Fernyhough A. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos Part A Appl Sci Manufactur. 2011;42:888–895.10.1016/j.compositesa.2011.03.008
  • Sikadur Reprise Bétonnage, ( Edition Mai 2017).
  • Norme Européenne N. EN ISO 1973. Fibres textiles-Détermination de la masse linéique-Méthode gravimétrique et méthode au vibroscope; 1996; p. 20.
  • Norme Européenne N. EN ISO 5079. Fibres textiles–détermination de la force de rupture et de l’allongement de rupture des fibres individuelles. France: AFNOR; 1996; p. 20.
  • Weibull W. A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademien; 1939.
  • Trujillo E, Moesen M, Osorio L, et al. Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Compos Part A Appl Sci Manufactur. 2014;61:115–125.10.1016/j.compositesa.2014.02.003
  • Roy A, Chakraborty S, Kundu SP, et al. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technol. 2012;107:222–228.10.1016/j.biortech.2011.11.073
  • Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng. 2009;40:601–606.10.1016/j.compositesb.2009.04.018
  • Rossi P, Harrouche N. Mix design and mechanical behaviour of some steel-fibre-reinforced concretes used in reinforced concrete structures. Mater Struct. 1990;23:256.10.1007/BF02472199
  • Hamzaoui R, Bouchenafa O, Guessasma S, et al. The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement. Mater Design. 2016;90:29–37.10.1016/j.matdes.2015.10.109
  • EN T. 12390-2. Testing hardened concrete-part 2: making and curing specimens for strength tests. Brussels: European Committee for Standardization; 2009.
  • EN C. 12390-1. Testing hardened concrete–Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization; 2000.
  • EN B. 12390–5. Testing hardened concrete–Part 5: Flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization; 2009.
  • Khaloo A, Raisi EM, Hosseini P, et al. Mechanical performance of self-compacting concrete reinforced with steel fibers. Construc Build Mater. 2014;51:179–186.10.1016/j.conbuildmat.2013.10.054
  • EN N. 196-3. Méthodes d’essais des ciments–Partie 3: Détermination du temps de prise et de la stabilité (March). Paris: Comité Européen de Normalisation (CEN), AFNOR; 2006.
  • Bilba K, Arsène M-A, Ouensanga A. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem Conc Compos. 2003;25:91–96.10.1016/S0958-9465(02)00003-3
  • Onuaguluchi O, Banthia N. Plant-based natural fibre reinforced cement composites: a review. Cem Conc Compos. 2016;68:96–108.10.1016/j.cemconcomp.2016.02.014
  • Sudin R, Swamy N. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J Mater Sci. 2006;41:6917–6924.10.1007/s10853-006-0224-3
  • Sedan D, Pagnoux C, Smith A, et al. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J Eur Ceramic Soc. 2008;28:183–192.10.1016/j.jeurceramsoc.2007.05.019
  • Fan M, Ndikontar MK, Zhou X, et al. Cement-bonded composites made from tropical woods: compatibility of wood and cement. Construc Build Mater. 2012;36:135–140.10.1016/j.conbuildmat.2012.04.089
  • Vaickelionis G, Vaickelioniene R. Cement hydration in the presence of wood extractives and pozzolan mineral additives. Ceramics Silikaty. 2006;50:115.
  • Akcay B, Tasdemir MA. Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Construc Build Mater. 2012;28:287–293.10.1016/j.conbuildmat.2011.08.044
  • Martinie L, Rossi P, Roussel N. Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Conc Res. 2010;40:226–234.10.1016/j.cemconres.2009.08.032
  • Y-n Ding, S-g Liu, Y-l Zhang. Thomas A. The investigation on the workability of fibre cocktail reinforced self-compacting high performance concrete. Construc Build Mater. 2008;22:1462–1470.
  • Brandt AM. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct. 2008;86:3–9.10.1016/j.compstruct.2008.03.006
  • Swamy R, Mangat P. Influence of fibre-aggregate interaction on some properties of steel fibre reinforced concrete. Mater Struct. 1974;7:307–314.
  • Savastano H, Agopyan V, Nolasco AM, et al. Plant fibre reinforced cement components for roofing. Construc Build Mater. 1999;13:433–438.10.1016/S0950-0618(99)00046-X
  • Tioua T, Kriker A, Barluenga G, et al. Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Construc Build Mater. 2017;154:721–733.10.1016/j.conbuildmat.2017.07.229
  • Fantilli AP, Vallini P, Chiaia B. Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression. Cem Conc Compos. 2011;33:520–527.10.1016/j.cemconcomp.2011.02.007
  • Centonze G, Leone M, Aiello M. Steel fibers from waste tires as reinforcement in concrete: a mechanical characterization. Construc Build Mater. 2012;36:46–57.10.1016/j.conbuildmat.2012.04.088
  • Corinaldesi V, Moriconi G. Characterization of self-compacting concretes prepared with different fibers and mineral additions. Cem Conc Compos. 2011;33:596–601.10.1016/j.cemconcomp.2011.03.007
  • Mohan T, Kanny K. Chemical treatment of sisal fiber using alkali and clay method. Compos Part A Appl Sci Manufactur. 2012;43:1989–1998.10.1016/j.compositesa.2012.07.012
  • Li Z, Wang L, Wang X. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers Polym. 2006;7:286–294.10.1007/BF02875686
  • Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Progress in Polymer Science. 1999;24:221–274.10.1016/S0079-6700(98)00018-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.