99
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling the micro-scale static friction coefficient of the MEMS silicon surfaces affected by Ag and Au deposition using the thermal evaporation method

, , ORCID Icon & ORCID Icon
Pages 355-370 | Received 10 Jan 2018, Accepted 28 Jun 2018, Published online: 19 Nov 2018

References

  • Kolahdoozan M, Hamedi M, Nikkhah-Bahrami M. A novel model for the effect of geometric properties of micro/nanoscale asperities on surface adhesion. Int J Adhesion Adhesives. 2014;48:280–287.
  • Porta M, Fantoni G, Lambert P. An integrated and compact device for microassembly exploiting electrostatic sorting and capillary grasping. CIRP J Manufact Sci Technol. 2010;3:185–190.
  • Vandaele V, Lambert P, Delchambre A. Non-contact handling in microassembly: Acoustical levitation. Precis Eng. 2005;29:491–505.
  • Bundesmann C, Lautenschläger T, Spemann D, et al. Systematic investigation of the properties of TiO2 films grown by reactive ion beam sputter deposition. Appl Surf Sci. 2017;421(1):331–340.
  • Tokas R, Jena S, Thakur S, et al. Effect of angle of deposition on micro-roughness parameters and optical properties of HfO2 thin films deposited by reactive electron beam evaporation. Thin Solid Films. 2016;609:42–48.
  • Bishop CA. Vacuum deposition onto webs: films and foils 2nd ed. USA: Elsevier Inc; 2011.
  • Chen H, Gang Y, Wenbin C, et al. Simulation of the organic thin film thickness distribution for multi-source thermal evaporation process. Vacuum. 2010;85:448–451.
  • Sahoo RK, Das A, Singh SK, et al. Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method. Surf Coat Technol. 2016;307:476–483.
  • Matijošius T, Ručinskienė A, Selskis A, et al. Friction reduction by nanothin titanium layers on anodized alumina. Surf Coat Technol. 2016;307:610–621.
  • Vlădescu SC, Olver AV, Pegg IG, et al. Combined friction and wear reduction in a reciprocating contact through laser surface texturing. Wear. 2016;358:51–61.
  • Greenwood J, Williamson J. Contact of nominally flat surfaces. In A: Mathematical, Physical and Engineering Sciences. Proceedings of the Royal Society; London: The Royal Society; 1966, p. 300–319.
  • Adams G, Nosonovsky M. Contact modeling-forces. Tribol Int. 2000;33:431–442.
  • Greenwood J, Putignano C, Ciavarella M. A Greenwood & Williamson theory for line contact. Wear. 2011;270:332–334.
  • Shi X, Polycarpou AA. An elastic-plastic hybrid adhesion model for contacting rough surfaces in the presence of molecularly thin lubricant. J Coll Inter Sci. 2005;290:514–525.
  • Tayebi N, Polycarpou AA. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribol Int. 2004;37:491–505.
  • Chang WR, Etsion I, Bogy DB. An elastic–plastic model for the contact of rough surfaces. ASME J Tribol. 1987;109:257–263.
  • Chang WR, Etsion I, Bogy D. Static friction coefficient model for metallic rough surfaces. J Tribol. 1988;110:57.
  • Kotwal CA, Bhushan B. Contact analysis of non-Gaussian surfaces for minimum static and kinetic friction and wear. Tribol Trans. 1996;39:890–898.
  • Elderton PE, Johnson LJ. System of frequency curves. London, UK: Cambridge University Press; 1969.
  • Chen Z, Tian W, Zhang X, et al. Effect of deposition parameters on surface roughness and consequent electromagnetic performance of capacitive RF MEMS switches: A review. J Micromech Microeng. 2017;27:113003.
  • Rezvanian O, Zikry M, Brown C, et al. Surface roughness, asperity contact and gold RF MEMS switch behavior. J Micromech Microeng. 2007;17:2006.
  • Toler BF, Coutu RA Jr, McBride JW. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J Micromech Microeng. 2013;23:103001.
  • Hariri A, Zu J, Mrad RB. Modeling of dry stiction in micro electro-mechanical systems (MEMS). J Micromech Microeng. 2006;16:1195.
  • Van Zwol P, Palasantzas G, De Hosson JTM. Influence of random roughness on the Casimir force at small separations. Phys Rev B. 2008;77:075412.
  • Chang WR, Etsion I, Bogy D. Adhesion model for metallic rough surfaces. J Tribol. 1988;110(1):50–56.
  • Derjaguin B, Muller V, Toporov YP. Effect of contact deformations on the adhesion of particles. Prog Surf Sci. 1994;45:131–143.
  • Johnson K, Kendall K, Roberts A. Surface energy and the contact of elastic solids. In A: Mathematical, Physical and Engineering Sciences. Proceedings of the Royal Society; London, The Royal Society Publishing; 1971, p. 301–313.
  • Muller VM, Yushchenko VS, Derjaguin BV. General theoretical consideration of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. J Coll Interf Sci. 1983;92:92–101.
  • Gilman JJ. Direct measurements of the surface energies of crystals. J Appl Phys. 1960;31:2208–2218.
  • Skriver HL, Rosengaard N. Surface energy and work function of elemental metals. Phys Rev B. 1992;46:7157.
  • Azo Material [Internet]. United Kingdom: An AZoNetwork Site; [cited 2018 May]. Available from: https://www.azom.com/properties.aspx/ArticleID=589/
  • Azo Material [Internet]. United Kingdom: An AZoNetwork Site; [cited 2018 May]. Available from: https://www.azom.com/properties.aspx/ArticleID=600/
  • Azo Material [Internet]. United Kingdom: An AZoNetwork Site; [cited 2018 May]. Available from: https://www.azom.com/properties.aspx/ArticleID=599/
  • Hamedi M, Vismeh M, Salimi P. A new MEMS assembly unit for hybrid self micropositioning and forced microclamping of submilimeter parts. Adv Mater Res. 2011;154–155:1705–1712.
  • Zhu H, Yang J, Wan Q, Lin L, Liao J, Yang Y, Liu N. Fabrication of homogenous multilayered W films by multi-step sputtering deposition: a novel grain boundary enrichment strategy. Nanotechnology. 2015;26:445603.
  • Yang X, Gao P, Yang Z, Zhu J, Huang F, Ye J. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures. Sci Rep. 2017;7:44576.
  • Tiwari R, Chandra S. Low-temperature silicon-to-silicon anodic bonding using sodium-rich glass for MEMS applications. J Elect Mater. 2014;43:555–566.
  • Bhatt V, Chandra S. Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. J Micromech Microeng. 2007;17:1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.