102
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the creep behavior of graphene oxide nanoplatelet-reinforced adhesively bonded joints

&
Pages 561-578 | Received 18 Jun 2018, Accepted 30 Sep 2018, Published online: 26 Dec 2018

References

  • Banea MD, da Silva LF, Campilho R. Effect of temperature on the shear strength of aluminium single lap bonded joints for high temperature applications. J Adhes Sci Technol. 2014;28:1367–1381.
  • Khoramishad H, Alizadeh O, da Silva L. Effect of multi-walled carbon nanotubes and silicon carbide nanoparticles on the deleterious influence of water absorption in adhesively bonded joints. J Adhes Sci Technol. 2018;32:1795–1808.
  • Allen KW, Shanahan MER. The creep behaviour of structural adhesive joints-I. J Adhes. 1975;7:161–174. doi: 10.1080/00218467508075048.
  • Sancaktar E, Dembosky S. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive. J Adhes. 1986;19:287–308.
  • Bondioli F, Dorigato A, Fabbri P, et al. Improving the creep stability of high‐density polyethylene with acicular titania nanoparticles. J Appl Polym Sci. 2009;112:1045–1055.
  • Dorigato A, Pegoretti A. Tensile creep behaviour of polymethylpentene–silica nanocomposites. Polymer Int. 2010;59:719–724.
  • Soliman E, Kandil UF, Reda Taha M. Limiting shear creep of epoxy adhesive at the FRP–concrete interface using multi-walled carbon nanotubes. Int J Adhes Adhes. 2012;33:36–44. doi: http://dx.doi.org/10.1016/j.ijadhadh.2011.09.006.
  • Tehrani M, Safdari M, Al-Haik MS. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast. 2011;27:887–901. doi: http://dx.doi.org/10.1016/j.ijplas.2010.10.005.
  • Zhang W, Joshi A, Wang Z, et al. Creep mitigation in composites using carbon nanotube additives. Nanotechnology. 2007;18:185703.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett.. 2008;8:902–907.
  • Lee J-U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B. 2011;83:081419.
  • Zandiatashbar A, Picu CR, Koratkar N. Control of epoxy creep using graphene. Small. 2012;8:1676–1682. doi: 10.1002/smll.201102686.
  • Tang L-C, Wang X, Gong L-X, et al. Creep and recovery of polystyrene composites filled with graphene additives. Compos Sci Technol. 2014; 2014/01/31/91:63–70. doi: https://doi.org/10.1016/j.compscitech.2013.11.028.
  • Wang X, Gong L-X, Tang L-C, et al. Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos A. 2015;69:288–298. doi: https://doi.org/10.1016/j.compositesa.2014.11.031.
  • Marami G, Nazari SA, Faghidian SA, et al. Effect of reduced graphene oxide reinforcement on creep behavior of adhesively bonded joints. Mechanics. 2017;23:646–652.
  • Khoramishad H, Ashofteh RS. Influence of multi-walled carbon nanotubes on creep behavior of adhesively bonded joints subjected to elevated temperatures. J Adhes. 2018;1–16. doi: 10.1080/00218464.2018.1451333.
  • ASM Handbook. Vol. 2, Properties and selection: nonferrous alloys and special-purpose materials; 1990.
  • Structural adhesive technical data sheet A, Huntsman; 2007.
  • Nanosany Corporation. Research grade graphene oxide nanoplatelets technical data sheet, Mashhad City, Khorasan Province, Iran; 2012.
  • ASTM D 2651. Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding. 1999;15:162–167.
  • Khoramishad H, Ashofteh R, Pourang H, et al. Experimental investigation of the influence of temperature on the reinforcing effect of graphene oxide nano-platelet on nanocomposite adhesively bonded joints. Theor Appl Fract Mech. 2018;94:95–100.
  • ASTM D 2990, Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics.
  • ASTM D 1780, Standard practice for conducting creep tests of metal-to-metal adhesives. 2012.
  • ASTM D 2294, Standard test method for creep properties of adhesives in shear by tension loading (metal-to-metal).
  • Gojny FH, Wichmann MH, Fiedler B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol. 2005;65:2300–2313.
  • Zamanian M, Mortezaei M, Salehnia B, et al. Fracture toughness of epoxy polymer modified with nanosilica particles: particle size effect. Eng Fracture Mech. 2013;97:193–206.
  • Ward Js IM. The mechanical properties of solid polymers. 2nd ed. New York: Wiley; 2004.
  • Houhou N, Benzarti K, Quiertant M, et al. Analysis of the nonlinear creep behavior of concrete/FRP-bonded assemblies. J Adhes Sci Technol. 2014;28:1345–1366.
  • Yang J-L, Zhang Z, Schlarb AK, et al. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions. Polymer. 2006;47:2791–2801.
  • Marais C, Villoutreix G. Analysis and modeling of the creep behavior of the thermostable PMR‐15 polyimide. J Appl Polym Sci. 1998;69:1983–1991.
  • Adalja SB, Otaigbe JU. Creep and recovery behavior of novel organic‐inorganic polymer hybrids. Polym Compos. 2002;23:171–181.
  • Nuñez AJ, Marcovich NE, Aranguren MI. Analysis of the creep behavior of polypropylene‐woodflour composites. Polym Eng Sci. 2004;44:1594–1603.
  • Sung YT, Kum CK, Lee HS, et al. Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer. 2005;46:5656–5661. doi: https://doi.org/10.1016/j.polymer.2005.04.075.
  • Yang J. Characterization, modeling and prediction of the creep resistance of polymer nanocomposites [dissertation]. Technische Universität Kaiserslautern; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.