178
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Durability of a lightweight construction material made with dune sand and expanded polystyrene

ORCID Icon, , , , &
Pages 2157-2179 | Received 23 Dec 2018, Accepted 24 Jun 2019, Published online: 12 Jul 2019

References

  • Neville AM, Brooks JJ. Concrete technology. 2nd ed. Harlow, England: Pearson Education, Prentice Hall; 2010.
  • Haque MN, Al-Khaiat H, Kayali O. Strength and durability of lightweight concrete. Cem Concr Comp. 2004;26:307–314.
  • Zaetang Y, Wongsa A, Sata V, et al. Use of lightweight aggregates in pervious concrete. Constr Build Mater. 2013;48:585–591.
  • Cui HZ, Lo TY, Memon SA, et al. Effect of lightweight aggregates on the mechanical properties and rittleness of lightweight aggregate concrete. Constr Build Mater. 2012;35:149–158.
  • Yingli G, Ling C, Zheming G, et al. Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Constr Build Mater. 2013;43:506–510.
  • Mohamed Afify R, Noha Soliman M. Feasibility of using lightweight artificial course aggregates in the manufacture of R. C. elements. Int J Eng Adv Technol. 2013;3:290–306.
  • Ben Fraj A, Kismi M, Mounanga P. Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Constr Build Mater. 2010;24:1069–1077.
  • Wang HY, Tsai KC. Engineering properties of lightweight aggregate concrete made from dredged silt. Cem Concr Comp. 2006;28:481–485.
  • Sajedi F, Shafigh P. High-strength lightweight concrete using leca, silica fume, and limestone. Arab J Sci Eng. 2012;37:1885–1893.
  • Malešev M, Radonjanin V, LukiĆ I, et al. The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete. Arab J Sci Eng. 2014;39:705–711.
  • Kathirvel P, Saraswathy V, Karthik SP, et al. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab J Sci Eng. 2013;38:589–598.
  • Chindaprasirt P, Nuaklong P, Zaetang Y, et al. Mechanical and thermal properties of recycling lightweight pervious concrete. Arab J Sci Eng. 2015;40:443–450.
  • Ganesh Babu K, Saradhi Babu D. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem Concr Res. 2003;33:755–762.
  • Saradhi Babu D, Ganesh Babu K, Wee TH. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cem Concr Res. 2005;35:1218–1223.
  • Tang WC, Lo Y, Nadeem A. Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cem Concr Compos. 2008;30:403–409.
  • Madandoust R, Ranjbar MM, Mousavi SY. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Construct Build Mater. 2011;25:3721–3731.
  • Ferrándiz-Mas V, Bond T, García-Alcocel E, et al. Lightweight mortars containing expanded polystyrene and paper sludge ash. Constr Build Mater. 2014;61:285–292.
  • Marjive VR, Badwaik VN, Ram Rathan Lal B. Experimental studies on controlled low strength material using stone dust and EPS beads. IJET. 2016;8:265–268.
  • Wang F, Miao L. A Proposed lightweight fill for embankment using cement treated yangzi river sand expanded polystyrene beads. Bull Eng Geol Environ. 2009;68:517–524.
  • Chen B, Liu J. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cem Concr Res. 2004;34:1259–1263.
  • San-Antonio-González A, Merino M, Arrebola C, Villoria-Sáez P. Lightweight material made with gypsum and EPS waste with enhanced mechanical strength. J Mater Civ Eng. 2016;28:04015101.
  • Laukaitis A, Zurauskas R, Keriene J. The effect of foam polystyrene granules on cement composite properties. Cem Concr Comp. 2005;27:41–47.
  • Tang WC, Cui HZ, Wu M. Creep and creep recovery properties of polystyrene aggregate concrete. Constr Build Mater. 2014;51:338–343.
  • Sayadi A, Tapia JV, Neitzert TR, et al. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater. 2016;112:716–724.
  • Demirboga R, Kan A. Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Constr Build Mater. 2012;35:730–734.
  • Ferrándiz-Mas V, García-Alcocel E. Physical and mechanical characterization of Portland cement mortars made with expanded polystyrene particles addition (EPS). Mater Construcc. 2012;62:547.
  • Ferrándiz-Mas V, García-Alcocel E. Durability of expanded polystyrene mortars. Constr Build Mater. 2013;46:175–182.
  • Ferrándiz V. Design of cement mortars with addition of expanded polystyrene (EPS) polymeric waste [Doctoral Thesis]. Research in sustainable architecture and urban planning program. Alicante: University of Alicante; 2013.
  • Bicer A, Kar F. Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Thermal Sci Eng Prog. 2017;1:59–65.
  • Kaya A, Kar F. An insulation plaster with waste expanded polystyrene. Proceedings of the 19th International THERMO Conference; 7–10 July, Budapest, Hungary, 2015.
  • Elisabeth B. Étude de l’Adsorption de l’Eau sur les Cristaux de Gypse et de son Influence sur les Propriétés Mécaniques du Plâtre Pris Pur Additivé [PhD thesis]. Marseille: Université d’Aix - Marseille III, 1998.
  • Philippe C. Résistance Mécanique des Plâtres Secs et Humides [PhD thesis]. Marseille: Université d’Aix - Marseille III, 1992.
  • Laoubi H, Bederina M, Djoudi A, et al. Study of a new plaster composite based on dune sand and expanded polystyrene as aggregates. TOCIEJ. 2018;12:401.
  • CNERIB. Recommandations pour la construction en plâtre (Recommendations for construction with Plaster). Algiers, Algeria: Ministère de l’hostat, CNERIB report; 1993.
  • Singh NB, Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog Cryst Growth Charact Mater. 2007;53:57.
  • Bederina M, Belhadj B, Ammari MS, et al. Improvement of the properties of a sand concrete containing barley straws – treatment of the barley straws. Constr Build Mater. 2016;115:464–477.
  • Bederina M, Hadjoudja M, Dheilly RM, et al. Combined effect of sand grain size and contents of wood and filler on the physicomechanical properties and the microstructure of lightweight sand concrete. J Adhes Sci Technol. 2016;30:1391–1412.
  • Herki BA, Khatib JM, Negim EM. Lightweight concrete made from waste polystyrene and fly ash. World Appl Sci J. 2013;21:1356–1360.
  • Hasler DJ, Wheelock TD, Doraiswamy LK, et al. Physical properties and composition effects on the reactivity of calcium-based sulfur sorbents. Ind Eng Chem Res. 2007;46:5913–5921.
  • Bouardi AE, Ezbakhe H, Ajzoul T, et al. (Thermophysical proprietés during the changment of the granular - compact Structure. Measurements and identifications; application to deformable expanded matrix at air: Case of the vermiculite and the polystyrene). 12èmes Journées Internationales de Thermique; 2005 Novembre 15 au 17; Tanger, Maroc.
  • Dupain R, Lanchan R, Saint-Arroman JC. (2009). Granulats, sols, ciment et bétons (Aggregates, soils, cements and concretes). Edition Casteilla, (France), Collection A.Capliez, 4th ed. p. 240.
  • Cerulli T, Pistolesi C, Maltese C, et al. Durability of traditional plasters withrespect to blast furnace slag-based plaster. Cem Concr Res. 2003;33:1375–1383.
  • Djoudi A. Etude de la durabilité et du comportement thermo-phonique des bétons de plâtre renforcés par des fibres végétales du palmier dattier [Thèse de Doctorat]. El Harrach: Ecole Nationale Polytechnique (ENP); 2015. p. 221.
  • Gustafsson SE. Transient plane source techniques for thermal diffusivity measurement of solid materials. Rev Sci Instrum. 1991;62:777–804.
  • Bederina M, Marmoret L, Mezreb K, et al. Effect of the addition of wood shavings on the thermal conductivity of the sand concretes -experimental study and modeling. Constr Build Mater. 2007;21:662–668.
  • RILEM Commission des bétons légers. Terminologie et définition. Matériaux et construction (Terminology and definition. Materials and construction), RILEM Publications SARL, 1970;3(13):60–69.
  • ACI, Committee 213R-87. Guild for structural lightweight aggregate concrete,. 1 CI Manual of Concrete Practice, Part I: Materials and General Properties of Concrete. Detroit, Michigan: Michigan, Farmington Hills; 1994. p. 18.
  • Kaya A, Kar F. Properties of concrete containing waste expanded polystyrene and natural resin. Constr Build Mater. 2016;105:572–578.
  • Bederina M, Makhloufi Z, Bounoua A, et al. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Constr Build Mater. 2013;47:146–158.
  • Edgar-Alejandro Pachon-Rodriguez Etude de l'influence de la dissolution sous contrainte sur les propriétés mécaniques des solides - fluage du plâtre [Thèse de doctorat]. Lyon: Université de Lyon; 2011. p. 135.
  • Heim P, de Linarès O, Hym L. Polystyrène et copolymères de styrène. Éditions techniques de l'ingénieur, traité. Plastiques et composites. AM. 2002;3:340.
  • Carrega M, Verney V. Matières plastiques. 3ème Édition. Paris: s.l., Dunod; 2012. p. 60.
  • Charle E. Carraher Jr. USED (GD) Seymour/Carraher's Polymer Chemistry. Sixth Edition; Basel, New York: Maecel Dekker Inc, 2003. p. 960.
  • Lewery AJ, Williamson J. The setting of gypsum plaster. part ii. the development of microstructure and strength. J Mater Sci. 1994;29:5524–5528.
  • Sylvain M. Étude du Comportement Mécanique du Plâtre Pris en Relation avec sa Microstructure [PhD thesis]. France: Institut National des Sciences Appliquées (INSA) de Lyon; 2001.
  • Gartner EM. Cohesion and expansion in polycrystalline solids formed by hydration reactions - the case of gypsum plasters. Cem Concr Res. 2009;39:289–295.
  • Marshamm D, Worthing D, and Heath R. Understanding – housing – defects. 3rd ed. London: Estate Gazelle; 2009. p. 344.
  • San-Antonio-González A, Del Río Merino M, Viñas Arrebola C, et al. Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behaviour. Constr Build Mater. 2015;93:57–63.
  • Kyung-Min Song, Jonathan Mitchell, Lynn F. Gladden. Observing microstructural evolution during plaster hydration. Diffusion Fundamentals. 2009;10:22.1–22.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.