187
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An enhanced conformal contact modeling of the cylindrical roller bearings with inclusion of roughness effect

, & ORCID Icon
Pages 369-387 | Received 04 Jun 2019, Accepted 16 Sep 2019, Published online: 08 Oct 2019

References

  • Bal’mont V, Varlamov E, Gorelik I. Structural vibrations of ball bearings. Soviet Mach Sci. 1987;1:82–88.
  • Gupta PK, Walowit J. Contact stresses between an elastic cylinder and a layered elastic solid. J Lub Tech. 1974;96(2):250–257.
  • Gupta P, Winn L, Wilcock D. Vibrational characteristics of ball bearings. J Lub Tech. 1977;99(2):284–287.
  • Gupta PK. Transient ball motion and skid in ball bearings. J Lub Tech. 1975;97(2):261–269.
  • Gupta P. Dynamics of rolling-element bearings–part I: cylindrical roller bearing analysis. J Lub Tech. 1979;101(3):293–302.
  • Gupta P. Dynamics of rolling-element bearings–part II: cylindrical roller bearing results. J Lub Tech. 1979;101(3):305–311.
  • Gupta P. Dynamics of rolling-element bearings–part IV: Ball bearing results. J Lub Tech. 1979;101(3):319–326.
  • Braun S, Datner B. Analysis of roller/ball bearing vibrations. J Mech Des. 1979;101(1):118–125.
  • Yhland E, Johansson L. Analysis of bearing vibration: a discussion of the various methods of monitoring bearing performance. Aircraft Eng Aerospace Tech. 1970;42(12):18–20.
  • Meyer L, Ahlgren F, Weichbrodt B. An analytic model for ball bearing vibrations to predict vibration response to distributed defects. J Mech Des. 1980;102(2):205–210.
  • El-Sayed H. Stiffness of deep-groove ball bearings. Wear. 1980;63(1):89–94.
  • Gargiulo E. A simple way to estimate bearing stiffness. Mach Des. 1980;52(17):107–110.
  • Walford T, Stone B. The measurement of the radial stiffness of rolling element bearings under oscillating conditions. J Mech Eng Sci. 1980;22(4):175–181.
  • Walford TLH, Stone BJ. Some damping and stiffness characteristics of angular contact bearings under oscillating radial load. J Mech Eng Sci. 1980;274:157–162.
  • Walford T, Stone B. The sources of damping in rolling element bearings under oscillating conditions. Proc Inst Mech Eng C J Mech Eng Sci. 1983;197(4):225–232.
  • Tandon N, Choudhury A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. J Sound Vib. 1997;205(3):275–292.
  • Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol Int. 1999;32(8):469–480.
  • Tamura A, Taniguchi O. Ball bearing vibrations (1st report). JSMET. 1960;26(161):19–25.
  • Tamura H, Tsuda Y. On the spring characteristics of a ball bearing: extreme characteristics with many balls. Bull JSME. 1980;23(180):961–969.
  • Tamura H, Tsuda Y. On the spring characteristics of a ball bearing: fluctuation due to ball revolution. Bull JSME. 1980;23(185):1905–1912.
  • Tamura H, Gad EH, Kondou T, et al. On the static running accuracy of ball bearings. Bull JSME. 1985;28(240):1240–1246.
  • Tamura H, Gad EH, Kondou T, et al. Static running accuracy of ball bearings. Mem Faculty Eng Kyushu Univ. 1983;43(4):285–316.
  • Sunnersj{\"o}, CS. Rolling bearing vibrations—the effects of geometrical imperfections and wear. Journal of sound and vibration 1985;4(98):455–474.
  • Perret H. Elastische spielschwingungen konstant belasterer wälzlager. Werkstatt und Betrieb. 1950;83(4):354–358.
  • Igarashi T, Hamada H. Studies on the vibration and sound of defective rolling bearings: first report: vibration of ball bearings with one defect. Bull JSME. 1982;25(204):994–1001.
  • Igarashi T, Yabe S. Studies on the vibration and sound of defective rolling bearings: second report: sound of ball bearings with one defect. Bull JSME. 1983;26(220):1791–1798.
  • Igarashi T, Kato J. Studies on the vibration and sound of defective rolling bearings: third report: vibration of ball bearing with multiple defects. Bull JSME. 1985;28(237):492–499.
  • Datta J. A model for studying structural vibrations in rolling element bearings [Ph.D. thesis]. Southern Illinois University at Carbondale; 1991.
  • Zhang B, Boffy H, Venner CH. Multigrid solution of 2d and 3d stress fields in contact mechanics of anisotropic inhomogeneous materials. Tribol Int. In Press; 2019;02(44).
  • Masjedi M, Khonsari M. Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces. Tribol Int. 2014;70:179–189.
  • Dimkovski Z, Lööf PJ, Rosén BG, et al. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes. Surf Topogr Metrol Prop. 2018;6(2):024005.
  • Liu J, Ma C, Wang S, et al. Thermal contact resistance between bearing inner ring and shaft journal. Int J Therm Sci. 2019;138:521–535.
  • Ogar P, Gorokhov D, Ugryumova E. Mechanics of unloading of a rough surfaces pre-loaded joint. MATEC Web of Conferences, volume 129. EDP Sciences; 2017. 06016.
  • Krupka I, Sperka P, Hartl M. Effect of surface roughness on lubricant film breakdown and transition from EHL to mixed lubrication. Tribol Int. 2016;100:116–125.
  • Zapletal T, Sperka P, Krupka I, et al. The effect of surface roughness on friction and film thickness in transition from EHL to mixed lubrication. Tribol Int. 2018;128:356–364.
  • Zhang X, Li Z, Wang J. Friction prediction of rolling-sliding contact in mixed EHL. Measurement. 2017;100:262–269.
  • Zapletal T, Sperka P, Krupka I, et al. The effect of surface grooves on transition to mixed lubrication. Tribol Int. 2017;114:409–417.
  • Cui S, Gu L, Fillon M, et al. The effects of surface roughness on the transient characteristics of hydrodynamic cylindrical bearings during startup. Tribol Int. 2018;128:421–428.
  • Hodaei M, Farhang K. Connection of surface roughness to hysteresis loss in spine implants. JBSE. 2015;10(2):14–00443–00443.
  • Hodaei M, Farhang K. The investigation of energy loss in conformal contact mechanics of carpal-radial components in wrist arthroplasty. ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers; 2014. p. V001T03A024–V001T03A024.
  • Hodaei M, Farhang K, Maani N. A contact model for establishment of hip joint implant wear metrics. JBiSE. 2014;07(4):228.
  • Hodaei M, Farhang K. Non-conformal contact mechanics of knee prosthetic implant: contact damping and natural frequency. ASME 2014 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers; 2014. p. V001T01A002–V001T01A002.
  • Sepehri A, Farhang K. An extension of ceb elastic-plastic contact model. ASME/STLE 2007 International Joint Tribology Conference. American Society of Mechanical Engineers; 2007. p. 597–599.
  • Chang W, Etsion I, Bogy DB. An elastic-plastic model for the contact of rough surfaces. J Tribol. 1987;109(2):257–263.
  • Bhushan B. Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol Lett. 1998;4(1):1–35.
  • Bhushan B. Contact mechanics of rough surfaces in tribology: single asperity contact. Appl Mech Rev. 1996;49(5):275–298.
  • Rumpf H. Particle technology. Vol. 1. Springer Science & Business Media; 2012. University of Karlsruhe, Germany
  • Rabinovich YI, Adler JJ, Ata A, et al. Adhesion between nanoscale rough surfaces: II. Measurement and comparison with theory. J Colloid Interface Sci. 2000;232(1):17–24.
  • Zhao Y, Maietta DM, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol. 1999;122(1):86–93.
  • Komvopoulos K, Yan W. A fractal analysis of stiction in microelectromechanical systems. J Tribol. 1997;119(3):391–400.
  • Kogut L, Jackson RL. A comparison of contact modeling utilizing statistical and fractal approaches. J Tribol. 2005;128(1):213–217.
  • Greenwood J, Williamson JP. Contact of nominally flat surfaces. Proc R Soc Lond A. 1966;295(1442):300–319.
  • Bhushan B. Modern tribology handbook, two volume set. CRC Press; 2000. Boca Raton, Florida, United States.
  • Boresi AP, Schmidt RJ, Sidebottom OM. Advanced mechanics of materials. Vol. 6. New York: Wiley; 1993.
  • Andrés-Grajales J, López-López JF, Riaza H. Ball bearing vibrations model: development and experimental validation. Ingeniería y competitividad. revista científica y tecnológica. 2014;(2):279–288.
  • Nayfeh AH, Mook DT. Nonlinear oscillations. John Wiley & Sons; 2008.Hoboken, New Jersey, United States.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.