187
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmental friendly green composites

, &
Pages 1720-1740 | Received 26 Aug 2019, Accepted 06 Feb 2020, Published online: 24 Feb 2020

References

  • Cho D, Kim HJ, Drzal LT. Surface treatment and characterization of natural fibers: effects on the properties of biocomposites. Polym Comp. 2013;3:133–177.
  • Soykeabkaew N, Arimoto N, Nishino T, et al. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Comp Sci Technol. 2008;68(10–11):2201–2207.
  • Fisher R. Natural fibers and green composites. Comp Manufactur. 2006;3:21-23.
  • Mohanty AK, Misra M, Drzal LT. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Comp Interfaces. 2001;8(5):313–343.
  • Seo JM, Cho D, Park WH, et al. Fiber surface treatments for improvement of the interfacial adhesion and flexural and thermal properties of jute/poly(lactic acid) biocomposites. J Biobased Mat Bioenergy. 2007;1:331–340.
  • Arun S, Ajith Kumar KA, Sreekala MS. Fully biodegradable potato starch composites: effect of macro and nano fiber reinforcement on mechanical, thermal and water-sorption characteristics. Int J Plast Technol . 2012;16(1):50–66.
  • Balaji A, Karthikeyan B, Swaminathan J, et al. Mechanical and thermal properties of untreated bagasse fiber reinforced cardanol eco-friendly biocomposites. Adv Nat Appl Sci. 2017;11(8):73–78.
  • Udhayasankar R, Karthikeyan B. A review on coconut shell reinforced composites. Int J ChemTech Res. 2015;8(11):624–637.
  • Khalid M, Ratnam CT, Chuah TG, et al. Comparative study of polypropylene composites reinforced with oil palm derived cellulose. Mater Des. 2008;29(1):173–178.
  • Udhayasankar R, Karthikeyan B. Processing of cardanol resin with CSP using compression molding technique. Mater Manuf Process. 2019;34(4):397–406.
  • Sarki J, Hassan SB, Aigbodion VS, et al. Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Comp. 2011;509(5):2381–2385.
  • Mosiewicki MA, Marcovich NE, Aranguren MI. Characterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy. In: Zafeiropoulos NE, editor. Interface engineering of natural fibre composites for maximum performance. Sawston (UK): Wood Head Publishing; 2011. p. 117–145.
  • Nair AB, Joseph R. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In: Kohjiya S, Ikeda Y, editors. Chemistry, manufacture and applications of natural rubber. Sawston (UK): Wood Head Publishing; 2014. p. 249–283.
  • Balaji A, Karthikeyan B, Swaminathan J, et al. Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J Nat Fibers. 2018;16(4):613–627.
  • Udhayasankar R, Karthikeyan B, Balaji A. Coconut shell particles reinforced cardanol formaldehyde resole resin biocomposites: effect of treatment on thermal properties. Int J Polym Anal Charact. 2018;23(3):252–259.
  • Balan AK, Parambil SM, Vakyath S, et al. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. J Mater Sci. 2017;52(11):6712–6725.
  • Barreto AC, Rosa DS, Fechine PB, et al. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Comp Part A: Appl Sci Manufact. 2011;42(5):492–500.
  • Huang GU. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des. 2009;30(9):3931–3934.
  • May CA. Epoxy resin—chemistry and technology. New York (NY): Marcel Dekker; 1988.
  • da Silva Santos R, de Souza AA, De Paoli MA, et al. Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Comp Part A: Appl Sci Manufact. 2010;41(9):1123–1129.
  • Stelescu MD, Airinei A, Manaila E, et al. Property correlations for composites based on ethylene propylene diene rubber reinforced with flax fibers. Polym Test. 2017;59:75–83.
  • Fu SY, Feng XQ, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Comp Part B: Eng. 2008;39(6):933–961.
  • Arrakhiz FZ, El Achaby M, Malha M, et al. Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene. Mat Des. 2013;43:200–205.
  • John MJ, Francis B, Varughese KT, et al. Effect of chemical modification on properties of hybrid fiber biocomposites. Comp Part A: Appl Sci Manufact. 2008;39(2):352–363.
  • Jawaid M, Abdul Khalil HPS, Abu Bakar A, et al. Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites. Mater Des. 2011;32(2):1014–1019.
  • Durowaye1 SI, Lawal1 GI, Akande1 MA, et al. Mechanical properties of particulate coconut shell and palm fruit polyester composites. Int J Mat Eng. 2014;4(4):141–147.
  • Jawaid M, Abdul Khalil HPS, Abu Bakar A. Hybrid composites of oil palm empty fruit bunches/woven jute fiber: chemical resistance. physical, and impact properties. J Comp Mater. 2011;45(24):2515–2522.
  • Masud S, Huda Lawrence T, Drzal AK, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Comp Sci Technol. 2008;68:424–432.
  • Reis PN, Ferreira JA, Antunes FV, et al. Flexural behaviour of hybrid laminated composites. Comp Part A: Appl Sci Manufact. 2007;38(6):1612–1620.
  • Shibata S, Cao Y, Fukumoto I. Effect of bagasse fiber on the flexural properties of biodegradable composites. Polym Comp. 2005;26(5):689–694.
  • Oza S, Ning H, Ferguson I, et al. Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Comp Part B: Eng. 2014;67:227–232.
  • Valodkar M, Thakore S. Thermal and mechanical properties of natural Rubber and starch nanobiocomposites. Int J Polym Anal Charact. 2010;15(6):387–395.
  • Balaji A, Karthikeyan B, Swaminathan J, et al. Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fiber composites. Int J Polym Anal Charact. 2018;23(1):70–77.
  • Silva GG, De Souza DA, Machado JC, et al. Mechanical and thermal characterization of native Brazilian coir fiber. J Appl Polym Sci. 2000;76(7):1197–1206.
  • Shukla SR, Athalye AR. Mechanical and thermal properties of glycidyl methacrylate grafted cotton cellulose. J Appl Polym Sci. 1995;57(8):983–988.
  • Maffezzoli A, Calo E, Zurlo S, et al. Cardanol based matrix biocomposites reinforced with natural fibers. J Comp Sci Technol. 2004;64(6):839–845.
  • Barreto ACH, Junior AEC, Freitas JEB, et al. Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. J Comp Mater. 2013;47(4):459–466.
  • Sinha E, Rout SK. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull Mater Sci. 2009;32(1):65–76.
  • Swaminathan J, Ramalingam M, Sundaraganesan N. Molecular structure and vibrational spectra of 3-amino-5-hydroxypyrazole by density functional method. Spectrochim Acta, Part A. 2009;71(5):1776–1782.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.