2,451
Views
87
CrossRef citations to date
0
Altmetric
Review Article

Friction-based welding processes: friction welding and friction stir welding

, , &
Pages 2613-2637 | Received 19 Feb 2020, Accepted 05 Jun 2020, Published online: 21 Jun 2020

References

  • Singh PK. Emerging trends in manufacturing. Insight Mech Eng. 2016;1:1.
  • Thomas WM, Nicholas ED. Friction stir welding for the transportation industries. Mater Des. 1997;18(4–6):269–273.
  • Thomas WM. Friction stir welding and related friction process characteristics. Proceedings of the 7th International Conference on ‘Joints in Aluminium–INALCO’, vol. 98; April 1998; pp. 157–174.
  • Mishra RS, De PS, Kumar N. Friction stir welding and processing: science and engineering. Berlin: Springer; 2014.
  • Srivastava AK, Sharma A. Advances in joining and welding technologies for automotive and electronic applications. 2017;5(1):7–13.
  • Jeffus L. Welding: principles and applications. Boston (MA): Cengage Learning; 2020.
  • Mehta K. Advanced joining and welding techniques: an overview. In: Advanced manufacturing technologies. Cham: Springer; 2017. p. 101–136.
  • Easterling K. Introduction to the physical metallurgy of welding. New York: Elsevier; 2013.
  • Xie Y, Zhuang J, Huang B, et al. Effect of different welding parameters on residual stress and deformation of 20/0Cr18Ni9 dissimilar metal arc-welding joint. J Adhes Sci Technol. 2020:1–25.
  • An Q, Fan KY, Ge YF, et al. Microstructure and mechanical properties of stainless steel clad plate joints produced by TIG and MAG hybrid welding. J Adhes Sci Technol. 2020;34(6):670–685.
  • Zhang H, Senkara J. Resistance welding: fundamentals and applications. London: CRC Press; 2011.
  • Khan MI. Welding science and technology. New Delhi: New Age International; 2007.
  • Messler Jr RW. Principles of welding: processes, physics, chemistry, and metallurgy. New York: John Wiley & Sons; 2008.
  • Martinsen K, Hu SJ, Carlson BE. Joining of dissimilar materials. CIRP Ann. 2015;64(2):679–699.
  • Weman K. Welding processes handbook. New York: Elsevier; 2011.
  • Singh R, Kumar R, Feo L, et al. Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Compos Part B Eng. 2016;101:77–86.
  • Rajak DK, Pagar DD, Menezes PL, et al. Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 2019;11(10):1667.
  • Muthuraja A, Naik S, Rajak DK, et al. Experimental investigation on chromium-diamond like carbon (Cr-DLC) coating through plasma enhanced chemical vapour deposition (PECVD) on the nozzle needle surface. Diamond Relat Mater. 2019;100:107588.
  • Han YQ, Ben LH, Yao JJ, et al. Investigation on the interface of Cu/Al couples during isothermal heating. Int J Miner Metall Mater. 2015;22(3):309–318.
  • Lesyk DA, Martinez S, Mordyuk BN, et al. Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment. Surf Coat Technol. 2017;328:344–354.
  • Li W, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev. 2016;61(2):71–100.
  • Yang YC, Chen WL, Lee HL. A nonlinear inverse problem in estimating the heat generation in rotary friction welding. Numer Heat Transfer, Part A: Appl. 2011;59(2):130–149.
  • Alves EP, Piorino Neto F, An CY. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process. JATM. 2010;2(3):301–306.
  • Madsen E, Kern K. U.S. Patent no. 10,266,947. Washington (DC): U.S. Patent and Trademark Office; 2019.
  • Wang GL, Li JL, Xiong JT, et al. Study on the friction interface evolution during rotary friction welding of tube. J Adhes Sci Technol. 2019;33(10):1033–1046.
  • Stütz M, Pixner F, Wagner J, et al. Rotary friction welding of molybdenum components. Int J Refract Met Hard Mater. 2018;73:79–84.
  • Hassan AJ, Lechelah R, Boukharouba T, et al. History of microstructure evolution and its effect on the mechanical behavior during friction welding for AISI 316. In: Applied mechanics, behavior of materials, and engineering systems. Cham: Springer; 2017. p. 51–66.
  • Li X, Li J, Liao Z, et al. Effect of rotation speed on friction behavior and radially non-uniform local mechanical properties of AA6061-T6 rotary friction welded joint. J Adhes Sci Technol. 2018;32(18):1987–2006.
  • Schmicker D, Naumenko K, Strackeljan J. A robust simulation of Direct Drive Friction Welding with a modified Carreau fluid constitutive model. Comput Methods Appl Mech Eng. 2013;265:186–194.
  • Li P, Li J, Li X, et al. A study of the mechanisms involved in initial friction process of continuous drive friction welding. J Adhes Sci Technol. 2015;29(12):1246–1257.
  • Kalsi NS, Sharma VS. A statistical analysis of rotary friction welding of steel with varying carbon in workpieces. Int J Adv Manuf Technol. 2011;57(9–12):957–967.
  • Tiley JS, Mahaffey DW, Alam T, et al. Strengthening mechanisms in an inertia friction welded nickel-base superalloy. Mater Sci Eng A. 2016;662:26–35.
  • Liu C, Zhu HY, Dong CL. Internal residual stress measurement on inertia friction welding of nickel-based superalloy. Sci Technol Weld Joining. 2014;19(5):408–415.
  • Williams R, Barbera D, Docherty M, et al. Computational modelling of inertia friction welding. Proc Appl Math Mech. 2019;19(1).
  • Tung DJ, Mahaffey DW, Senkov ON, et al. Transient behaviour of torque and process efficiency during inertia friction welding. Sci Technol Weld Joining. 2019;24(2):136–147.
  • Rajak DK, Wagh PH, Menezes PL, et al. Critical overview of coatings technology for metal matrix composites. J Bio Tribo Corros. 2020;6(1):12.
  • He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66.
  • Vaziri M, Lindgren O, Pizzi A. Influence of machine setting and wood parameters on crack formation in scots pine joints produced by linear friction welding. J Adhes Sci Technol. 2012;26(18–19):2189–2197.
  • Ruponen J, Čermák P, Rhême M, et al. Reducing the moisture sensitivity of linear friction welded birch (Betula pendula L.) wood through thermal modification. J Adhes Sci Technol. 2015;29(22):2461–2474.
  • Song X, Xie M, Hofmann F, et al. Residual stresses in linear friction welding of aluminium alloys. Mater Des. 2013;50:360–369.
  • Chamanfar A, Jahazi M, Cormier J. A review on inertia and linear friction welding of Ni-based superalloys. Metall Mater Trans A. 2015;46(4):1639–1669.
  • Turner R, Schroeder F, Ward RM, et al. The importance of materials data and modelling parameters in an FE simulation of linear friction welding. Adv Mater Sci Eng. 2014;2014:1–8.
  • Buffa G, Fratini L. Strategies for numerical simulation of linear friction welding of metals: a review. Prod Eng Res Dev. 2017;11(3):221–235.
  • Raab U, Levin S, Wagner L, et al. Orbital friction welding as an alternative process for blisk manufacturing. J Mater Process Technol. 2015;215:189–192.
  • Janssen MA, Luz G, Gniesmer V, et al. U.S. Patent No. 8,789,273. Washington (DC): U.S. Patent and Trademark Office; 2014.
  • Uday MB, Ahmad Fauzi MN, Zuhailawati H, et al. Advances in friction welding process: a review. Sci Technol Weld Joining. 2010;15(7):534–558.
  • Mercan S, Aydin S, Özdemir N. Effect of welding parameters on the fatigue properties of dissimilar AISI 2205–AISI 1020 joined by friction welding. Int J Fatigue. 2015;81:78–90.
  • Cui L, Yang X, Wang D, et al. Friction taper plug welding for S355 steel in underwater wet conditions: welding performance, microstructures and mechanical properties. Mater Sci Eng: A. 2014;611:15–28.
  • Ma H, Qin G, Geng P, et al. Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding. Mater Des. 2015;86:587–597.
  • Muralimohan CH, Ashfaq M, Ashiri R, et al. Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel. Metall Mater Trans A. 2016;47(1):347–359.
  • Cheepu M, Ashfaq M, Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. Trans Indian Inst Met. 2017;70(10):2591–2600.
  • Senkov ON, Mahaffey DW, Semiatin SL. Effect of preheating on the inertia friction welding of the dissimilar superalloys Mar-M247 and LSHR. Metall Mater Trans A. 2016;47(12):6121–6137.
  • Guo W, You G, Yuan G, et al. Microstructure and mechanical properties of dissimilar inertia friction welding of 7A04 aluminum alloy to AZ31 magnesium alloy. J Alloys Compd. 2017;695:3267–3277.
  • Chen X, Xie FQ, Ma TJ, et al. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy. Mater Des. 2016;94:45–53.
  • Mogami H, Matsuda T, Sano T, et al. High-frequency linear friction welding of aluminum alloys. Mater Des. 2018;139:457–466.
  • Ma TJ, Chen X, Li WY, et al. Microstructure and mechanical property of linear friction welded nickel-based superalloy joint. Mater Des. 2016;89:85–93.
  • Wang XY, Li WY, Ma TJ, et al. Characterisation studies of linear friction welded titanium joints. Mater Des. 2017;116:115–126.
  • Astarita A, Curioni M, Squillace A, et al. Corrosion behaviour of stainless steel–titanium alloy linear friction welded joints: galvanic coupling. Mater Corros. 2015;66(2):111–117.
  • Schröder F, Ward RM, Walpole AR, et al. Linear friction welding of Ti6Al4V: experiments and modelling. Mater Sci Technol. 2015;31(3):372–384.
  • Heidarzadeh A, Barenji RV, Esmaily M, et al. Tensile properties of friction stir welds of AA 7020 aluminum alloy. Trans Indian Inst Met. 2015;68(5):757–767.
  • Preuss M, Threadgill P. Solid state welding of aeroengine materials. Materials Technology High Temperature Materials, 2010, https://doi.org/10.1002/9780470686652.eae222
  • Phillips DH. Welding engineering: an introduction. New York: John Wiley & Sons; 2016.
  • Panaskar N, Terkar R. A review on recent advances in friction stir lap welding of aluminium and copper. Mater Today: Proc. 2017;4(8):8387–8393.
  • Hovanski Y, Carsley JE, Clarke KD, et al. Friction-stir welding and processing. JOM. 2015;67(5):996–997.
  • Mendes N, Neto P, Loureiro A, et al. Machines and control systems for friction stir welding: a review. Mater Des. 2016;90:256–265.
  • Madavan SP, Mahapatra MM, Kumar P. On friction stir welding of Mg-Zn-RE-Zr alloy using threaded tools for aerospace application. In: Friction stir welding and processing VII. Cham: Springer; 2013. p. 237–244.
  • Perrett J, Martin J, Peterson J, et al. Friction stir welding of industrial steels. Friction Stir Welding Processing VI. 2011;65:65–72.
  • Mishra R, Mahoney MW, Sato Y, Hovanski, Y., Verma, R. (Eds.), Friction Stir Welding and Processing VII, The Minerals, Metals & Materials Series, 2016, eBook ISBN 978-3-319-48108-1, Springer International Publishing.
  • Zhang F, Su X, Chen Z, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater Des. 2015;67:483–491.
  • Li Y, Qin F, Liu C, et al. A review: effect of friction stir welding on microstructure and mechanical properties of magnesium alloys. Metals. 2017;7(12):524.
  • Zens A, Zaeh MF, Marstatt R, et al. Friction stir welding of dissimilar metal joints. Materialwiss Werkstofftech. 2019;50(8):949–957.
  • Mohanty HK, Mahapatra MM, Kumar P, et al. Effect of tool shoulder and pin probe profiles on friction stirred aluminum welds—a comparative study. J Marine Sci Appl. 2012;11(2):200–207.
  • Bilici MK, Yukler AI. Effects of welding parameters on friction stir spot welding of high density polyethylene sheets. Mater Des. 2012;33:545–550.
  • Neto DM, Neto P. Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol. 2013;65(1–4):115–126.
  • Zhang H. Friction stir welding of magnesium alloys. In: Welding and joining of magnesium alloys. Cambridge, UK: Woodhead Publishing; 2010. p. 274–305.
  • Zhao Y, Zhou L, Wang Q, et al. Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding. Mater Des. 2014;57:146–155.
  • Li B, Shen Y. A feasibility research on friction stir welding of a new-typed lap–butt joint of dissimilar Al alloys. Mater Des. 2012;34:725–731.
  • Cui L, Yang X, Xie Y, et al. Process parameter influence on defects and tensile properties of friction stir welded T-joints on AA6061-T4 sheets. Mater Des. 2013;51:161–174.
  • Mohan DG, Gopi S, Rajasekar V. Mechanical and corrosion resistant properties of hybrid-welded stainless steel. Mater Perform. 2018;57(1):53–56.
  • Dumpala L, Lokanadham D. Low cost friction stir welding of aluminium nanocomposite – a review. Procedia Mater Sci. 2014;6:1761–1769.
  • Fu B, Qin G, Li F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol. 2015;218:38–47.
  • Paidar M, Ojo OO, Ezatpour HR, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159–169.
  • Heidarzadeh A. Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM, EBSD, and TEM study. Arch Civil Mech Eng. 2019;19(1):137–146.
  • Lee HS, Lee YR, Min KJ. Effects of friction stir welding speed on AA2195 alloy. In: MATEC web of conferences. Vol. 45. France: EDP Sciences; 2016, p. 01003.
  • Ramnath BV, Subramanian SA, Rakesh R, et al. A review on friction stir welding of aluminium metal matrix composites. In IOP conference series: materials science and engineering. Vol. 390, No. 1. Bristol (UK): IOP Publishing; 2018. p. 012103.
  • Zhu ZG, Sun YF, Goh MH, et al. Friction stir welding of a CoCrFeNiAl0. 3 high entropy alloy. Mater Lett. 2017;205:142–144.
  • Li H, Yang S, Zhang S, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654. Mater Des. 2017;121:261–217.
  • Zandsalimi S, Heidarzadeh A, Saeid T. Dissimilar friction-stir welding of 430 stainless steel and 6061 aluminum alloy: microstructure and mechanical properties of the joints. Proc Imeche. 2019;233(9):1791–1801.
  • Zhang HJ, Liu HJ, Yu L. Effect of water cooling on the performances of friction stir welding heat-affected zone. J Mater Eng Perform. 2012;21(7):1182–1187.
  • Zhang J, Shen Y, Yao X, et al. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. Mater Des. 2014;64:74–80.
  • Zhang H, Liu H. Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy. Mater Des. 2013;45:206–211.
  • Heidarzadeh A, Saeid T. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng: A. 2016;649:349–358.
  • Yazdipour A, Heidarzadeh A. Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints. J Alloys Compd. 2016;680:595–603.
  • Yazdipour A, Heidarzadeh A. Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int J Adv Manuf Technol. 2016;87(9–12):3105–3112.
  • Heidarzadeh A, Motalleb-Nejad P, Barenji RV, et al. The origin of the maximum hardness of the friction stir welded single-phase Cu-Zn plates: RSM, EBSD, and TEM investigation. Mater Chem Phys. 2019;223:9–15.
  • Manuel N, Silva C, da Costa JMD, et al. Friction stir welding of T-joints in dissimilar materials: influence of tool geometry and materials properties. Mater Res Express. 2019;6(10):106528.
  • Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, et al. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des. 2012;35:330–334.
  • Golezani AS, Barenji RV, Heidarzadeh A, et al. Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. Int J Adv Manuf Technol. 2015;81(5–8):1155–1164.
  • Panda B, Garg A, Jian Z, et al. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed. Front Mech Eng. 2016;11(3):289–298.
  • Sabry I, El-Kassas AM, Mourad AHI, et al. Friction stir welding of T-joints: experimental and statistical analysis. JMMP. 2019;3(2):38.
  • Moshwan R, Yusof F, Hassan MA, et al. Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al–Mg–Cr–Mn (AA 5052-O) alloy. Mater Des (1980–2015). 2015;66:118–128.
  • Firouzdor V, Kou S. Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A. 2010;41(11):2914–2935.
  • Aissani M, Gachi S, Boubenider F, et al. Design and optimization of friction stir welding tool. Mater Manuf Processes. 2010;25(11):1199–1205.
  • Zhou L, Wang T, Zhou WL, et al. Microstructural characteristics and mechanical properties of 7050-T7451 aluminum alloy friction stir-welded joints. J Mater Eng Perform. 2016;25(6):2542–2550.
  • Ni Y, Qin DQ, Mao Y, et al. Influences of welding parameters on axial force and deformations of micro pinless friction stir welding. Int J Adv Manuf Technol. 2020;106(7–8):3273–3211.
  • Rose AR, Manisekar K, Balasubramanian V. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy. Trans Nonferrous Metals Soc China. 2011;21(5):974–984.
  • Kumar K, Kailas SV. On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Mater Des. 2008;29(4):791–797.
  • Aldanondo E, Arruti E, Echeverria A. Friction stir weld lap joint properties in aeronautic aluminium alloys. In: Friction stir welding and processing IX. Cham: Springer; 2017. p. 109–117.
  • Gungor B, Kaluc E, Taban E, et al. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des (1980–2015). 2014;56:84–90.
  • Santos TFA, Hermenegildo TFC, Afonso CRM, et al. Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Eng Fract Mech. 2010;77(15):2937–2945.
  • Eyre R, Steel R. U.S. Patent Application No. 11/700,724; 2007. https://patents.google.com/patent/US20070187465A1/en?oq=U.S.+Patent+Application+No.+11%2f700%2c724
  • Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter. Scr Mater. 2011;64(1):9–12.
  • Mehta M, Arora A, De A, et al. Tool geometry for friction stir welding—optimum shoulder diameter. Metall Mat Trans A. 2011;42(9):2716–2722.
  • Galvão I, Leal RM, Rodrigues DM, et al. Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Technol. 2013;213(2):129–135.
  • Leal RM, Leitao C, Loureiro A, et al. Material flow in heterogeneous friction stir welding of thin aluminium sheets: effect of shoulder geometry. Mater Sci Eng: A. 2008;498(1–2):384–391.
  • Uematsu Y, Tokaji K, Tozaki Y, et al. Fatigue behaviour of dissimilar friction stir spot weld between A6061 and SPCC welded by a scrolled groove shoulder tool. Procedia Eng. 2010;2(1):193–201.
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51(3):250–261.
  • El-Batahgy AM, Terad B, Omar A. Effect of friction stir welding parameters on properties of AA6061 aluminum alloy butt welded joints. Proceedings of the 1st international joint symposium on joining and welding. Woodhead Publishing; 2013. p. 33–40. https://www.elsevier.com/books/proceedings-of-the-1st-international-joint-symposium-on-joining-and-welding/fujii/978-1-78242-163-4
  • Buffa G, Campanile G, Fratini L, et al. Friction stir welding of lap joints: influence of process parameters on the metallurgical and mechanical properties. Mater Sci Eng: A. 2009;519(1–2):19–26.
  • Rai R, De A, Bhadeshia HKDH, et al. Friction stir welding tools. Sci Technol Weld Joining. 2011;16(4):325–342.
  • Motalleb-Nejad P, Saeid T, Heidarzadeh A, et al. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. Mater Des. 2014;59:221–226.
  • Khodaverdizadeh H, Heidarzadeh A, Saeid T. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des. 2013;45:265–270.
  • Bisadi H, Tavakoli A, Sangsaraki MT, et al. The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Mater Des. 2013;43:80–88.
  • Farrokhi H, Heidarzadeh A, Saeid T. Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Joining. 2013;18(8):697–702.
  • Dubourg L, Merati A, Jahazi M. Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin. Mater Des. 2010;31(7):3324–3330.
  • Sabari SS, Malarvizhi S, Balasubramanian V. Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol. 2016;237:286–300.
  • Sinhmar S, Dwivedi DK. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling. Mater Sci Eng: A. 2017;684:413–422.
  • Mofid MA, Abdollah-Zadeh A, Gür CH. Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen. Int J Adv Manuf Technol. 2014;71(5–8):1493–1499.
  • Rahmi M, Abbasi M. Friction stir vibration welding process: modified version of friction stir welding process. Int J Adv Manuf Technol. 2017;90(1–4):141–151.
  • Zhong YB, Wu CS, Padhy GK. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol. 2017;239:273–283.
  • Tarasov SY, Rubtsov VE, Fortuna SV, et al. Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy. Weld World. 2017;61(4):679–690.
  • Padhy GK, Wu CS, Gao S, et al. Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration. Mater Des. 2016;92:710–723.
  • Sun T, Roy MJ, Strong D, et al. Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J Mater Process Technol. 2017;242:92–100.
  • Li Z, Yue Y, Ji S, et al. Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder. Mater Des. 2016;90:238–247.
  • Regensburg A, Schürer R, Weigl M, et al. Influence of pin length and electrochemical platings on the mechanical strength and macroscopic defect formation in stationary shoulder friction stir welding of aluminium to copper. Metals. 2018;8(2):85.
  • Patel V, Li W, Xu Y. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. Mater Manuf Processes. 2019;34(2):177–182.
  • Shen Z, Ding Y, Gerlich AP. Advances in friction stir spot welding. Crit Rev Solid State Mater Sci. 2019;17:1–78.
  • Tozaki Y, Uematsu Y, Tokaji K. A newly developed tool without probe for friction stir spot welding and its performance. J Mater Process Technol. 2010;210(6–7):844–851.
  • Dourandish S, Mousavizade SM, Ezatpour HR, et al. Microstructure, mechanical properties and failure behaviour of protrusion friction stir spot welded 2024 aluminium alloy sheets. Sci Technol Weld Joining. 2018;23(4):295–307.
  • Wang K, Khan HA, Li Z, et al. Micro friction stir welding of multilayer aluminum alloy sheets. J Mater Process Technol. 2018;260:137–145.
  • Papaefthymiou S, Goulas C, Gavalas E. Micro-friction stir welding of titan zinc sheets. J Mater Process Technol. 2015;216:133–139.
  • Ni Y, Fu L, Chen HY. Effects of travel speed on mechanical properties of AA7075-T6 ultra-thin sheet joints fabricated by high rotational speed micro pinless friction stir welding. J Mater Process Technol. 2019;265:63–70.
  • Huang Y, Meng X, Zhang Y, et al. Micro friction stir welding of ultra-thin Al-6061 sheets. J Mater Process Technol. 2017;250:313–319.
  • Martin J, Wei S. Friction stir welding technology for marine applications. In: Friction stir welding and processing VIII. Cham: Springer; 2015. p. 219–226.
  • Heidarzadeh A, Chabok A, Klemm V, et al. A novel approach to structure modification of brasses by combination of non-equilibrium heat treatment and friction stir processing. Metall Mat Trans A. 2019;50(5):2391–2398.
  • Jafarzadegan M, Abdollah-Zadeh A, Feng AH, et al. Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel. J Mater Sci Technol. 2013;29(4):367–372.
  • Heidarzadeh A, Chabok A, Pei Y. Friction stir welding of Monel alloy at different heat input conditions: microstructural mechanisms and tensile behavior. Mater Lett. 2019;245:94–97.
  • Heidarzadeh A, Saeid T, Klemm V, et al. Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Mater Des. 2019;162:185–197.
  • Heidarzadeh A, Laleh HM, Gerami H, et al. The origin of different microstructural and strengthening mechanisms of copper and brass in their dissimilar friction stir welded joint. Mater Sci Eng: A. 2018;735:336–342.
  • Heidarzadeh A, Barenji RV, Khalili V, et al. Optimizing the friction stir welding of the α/β brass plates to obtain the highest strength and elongation. Vacuum. 2019;159:152–160.
  • Heidarzadeh A, Saeid T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 2018;37(5):388–398.
  • Heidarzadeh A, Saeid T, Klemm V. Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy. Mater Charact. 2016;119:84–91.
  • Heidarzadeh A, Pouraliakbar H, Mahdavi S, et al. Ceramic nanoparticles addition in pure copper plate: FSP approach, microstructure evolution and texture study using EBSD. Ceram Int. 2018;44(3):3128–3133.
  • Seif A, Heidarzadeh A, Saeid T. A comparative study between conventional and hybrid friction stir welding of a TRIP steel. Mater Res Express. 2018;5(7):076521.
  • McAndrew AR, Colegrove PA, Flipo BC, et al. 3D modelling of Ti–6Al–4V linear friction welds. Sci Technol Weld Joining. 2017;22(6):496–504.
  • Ola OT, Ojo OA, Wanjara P, et al. A study of linear friction weld microstructure in single crystal CMSX-486 superalloy. Metall and Mat Trans A. 2012;43(3):921–933.
  • Sabelkin V, Joshi G, Mall S, et al. Monotonic tension and creep behavior of single crystal CMSX-486 under combustion environment. Mater Sci Eng: A. 2013;569:106–116.
  • Effertz PS, Fuchs F, Enzinger N. Modelling the flash formation of linear friction welded 30CrNiMo8 high strength steel chains. Int J Adv Manuf Technol. 2017;92(5–8):2479–2486.
  • Karadge M, Grant B, Withers PJ, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds. Metall and Mat Trans A. 2011;42(8):2301–2311.
  • Khadeer SA, Babu PR, Kumar BR, et al. Influence of upset pressure on microstructure and mechanical properties of friction-welded AISI 4140 low alloy steel pipes. Trans Indian Inst Met. 2020;73(2):465–414.
  • Kumar R, Singh R, Ahuja IPS, et al. Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos Part B: Eng. 2018;132:244–257.
  • Heiduk T, Weiß U, Fröhlich A, et al. The new V8 TDI engine from Audi Part 1: engine architecture and turbocharging concept with electric powered compressor. MTZ Worldw. 2016;77(6):20–25.
  • Jeong HS, Son CW, Oh JS, et al. Friction welding process analysis of piston rod in marine diesel engine and mechanical properties of welded joint. Trans Mater Process. 2011;20(3):236–242.
  • Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol. 2018;34(1):73–91.
  • Feng Z, Ren W. Initial investigation on joining ODS alloy using friction stir welding for Gen IV nuclear reactor heat exchanger applications. In: ASME 2007 pressure vessels and piping conference. American Society of Mechanical Engineers Digital Collection; 2007 January. p. 431–438.
  • Ohashi T, Tabatabaei HM, Nishihara T. Observation of material flow in friction stir forming for A5083 aluminum alloy gear-rack. In: Materials science forum. Vol. 889. Switzerland: Trans Tech Publications; 2017. p. 113–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.