205
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of light on the wettability properties of films made by the assembly of SiO2 and α − Fe2O3 nanoparticles

, , , ORCID Icon &
Pages 386-405 | Received 21 Apr 2020, Accepted 28 Jul 2020, Published online: 17 Aug 2020

References

  • Zhang X, Guo Y, Zhang P, et al. Superhydrophobic and superoleophilic nanoparticle film: synthesis and reversible wettability switching behavior. ACS Appl Mater Interfaces. 2012;4(3):1742–1746.
  • Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388(6641):431–432.
  • Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc. 2004;126(1):62–63.
  • Ho SL, Kwak D, Dong YL, et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J Am Chem Soc. 2007;129(14):4128–4129.
  • Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater. 2002;14(6):2812–2816.
  • Zhao B, Moore JS, Beebe DJ. Surface-directed liquid flow inside microchannels. Science. 2001;291(5506):1023–1026.
  • Wu M, Chang L, Zhang L, et al. Effects of roughness on the wettability of high temperature wetting system. Surf Coatings Technol. 2016;287:145–152.
  • Kanta A, Sedev R, Ralston J. Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir. 2005;21(6):2400–2407.
  • Zhang J, Lu X, Huang W, et al. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun. 2005;26(6):477–480.
  • Xia F, Zhu Y, Feng L, et al. Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter. 2009;5(2):275–281.
  • Gao J, Liu Y, Xu H, et al. Biostructure-like surfaces with thermally responsive wettability prepared by temperature-induced phase separation micromolding. Langmuir. 2010;26(12):9673–9676.
  • Yang J, Zhang Z, Men X, et al. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage. Langmuir. 2010;26(12):10198–10202.
  • Kulal PM, Dubal DP, Lokhande CD, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd. 2011;509(5):2567–2571.
  • Zhu Y, Zhang JC, Zhai J, et al. Preparation of superhydrophilic α-Fe2O3 nanofibers with tunable magnetic properties. Thin Solid Films. 2006;510(1–2):271–274.
  • Lu HB, Liao L, Li JC, et al. Hematite nanochain networks: simple synthesis, magnetic properties, and surface wettability. Appl Phys Lett. 2008;92(9):093102–093117.
  • Yan B, Tao J, Pang C, et al. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film. Langmuir. 2008;24(19):10569–10571.
  • Zheng X, Jiao Y, Chai F, et al. Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties. J Colloid Interface Sci. 2015;457:345–352.
  • Rahman IA, Padavettan V. Synthesis of Silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J Nanomater. 2012;2012:1–15.
  • Marmur A. The role of thin films in wetting. Rev Phys Appl (Paris). 1988;23(6):1039–1045.
  • Uelzen T, Müller J. Wettability enhancement by rough surfaces generated by thin film technology. Thin Solid Films. 2003;434(1–2):311–315.
  • Iqbal M, Dinh DK, Abbas Q, et al. Controlled surface wettability by plasma polymer surface modification. Surfaces. 2019;2(2):349–371.
  • Bahners TJ. The do’s and don’ts of wettability characterization in textiles. J Adhes Sci Technol. 2011;25(16):2005–2021.
  • Duta L, Popescu AC, Zgura I, et al. 2015. Wettability of nanostructured surfaces. In: Aliofkhazraei M. editor. Wetting and wettability. Rijeka: IntechOpen,
  • Cebeci FC, Wu Z, Zhai L, et al. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 2006;22(6):2856–2862.
  • Katagiri K, Tanaka Y, Uemura K, et al. Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater. 2017;9(3):e355–e355.
  • Abro DMK, Dable PJMR, Amstutz V, et al. Forced electrocodeposition of silica particles into nickel matrix by horizontal impinging jet cell. MSCE. 2017;05(02):51–63.
  • Shinde SS, Bansode RA, Bhosale CH, et al. Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells. J Semicond. 2011;32(1):013001.
  • Frandsen C, Mørup S. Spin rotation in α-Fe2O3 nanoparticles by interparticle interactions. Phys Rev Lett. 2005;94(2):027202.
  • Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micrón size range. J Colloid Interface Sci. 1968;26:62–69.
  • Chen H, Zhao Y, Yang M, et al. Glycine-assisted hydrothermal synthesis of peculiar porous α-Fe2O3 nanospheres with excellent gas-sensing properties. Anal Chim Acta. 2010;659:266–273.
  • Li X, Li Z, Xu F, et al. Large-scale fabrication of ordered monolayer self-assembly of polystyrene submicron spheres. In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y, editors. Applied sciences in graphic communication and packaging. Lecture notes in electrical engineering. Singapore: Springer; 2018.
  • Khabibullin A, Minteer SD, Zharov I. The effect of sulfonic acid group content in pore-filled silica colloidal membranes on their proton conductivity and direct methanol fuel cell performance. J Mater Chem A. 2014;2(32):12761.
  • Hoffmann H. Solid/Liquid Dispersions. Edited by Th. F. Tadros. Academic Press, London 1987. xii, 331. pp. bound, £25.—ISBN 0-12-682178-X. Angew Chemie. 2007;101:545–546.
  • Xu P, Wang H, Tong R, et al. Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym Sci. 2006;284(7):755–762.
  • Fidalgo A, Rosa ME, Ilharco LM. Chemical control of highly porous silica xerogels: physical properties and morphology. Chem Mater. 2003;15(11):2186–2192.
  • Palomec-Garfias AF, Jardim KV, Sousa MH, et al. Influence of polyelectrolyte chains on surface charge and magnetization of iron oxide nanostructures. Colloids Surf A Physicochem Eng Asp. 2018;549:13–24.
  • Illés E, Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci. 2006;295:115–123.
  • Berg JM, Romoser A, Banerjee N, et al. The relationship between pH and zeta potential of ∼30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3(4):276–283.
  • Sompech S, Dasri T, Thaomola S. Preparation and characterization of amorphous silica and calcium oxide from agricultural wastes. Orient J Chem. 2016;32(4):1923–1928.
  • Chung Y, Lim SK, Kim CK, et al. Synthesis of γ-Fe2O3 nanoparticles embedded in polyimide. J Magn Magn Mater. 2004;272–276:2003–2004.
  • TučEk Jí, ZbořIl Radek, Namai Asuka, et al. ε-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater. 2010;22(24):6483–6505.
  • Chirita M, Grozescu I. Fe2O3-nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem Bull Politehnica Univ (Timisoara). 2009;54:1–8.
  • Ruíz-Baltazar A, Esparza R, Rosas G, et al. Effect of the surfactant on the growth and oxidation of iron nanoparticles effect of the surfactant on the growth and oxidation of iron nanoparticles. J Nanomater. 2015;2015:1–8.
  • Sakurai S, Namai A, Hashimoto K, et al. First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-phase). J Am Chem Soc. 2009;131(51):18299–18303.
  • Ben-Dor L, Fischbein E, Felner I, et al. β Fe2O3: preparation of thin films by chemical vapor deposition from organometallic chelates and their characterization. J Electrochem Soc. 1977;124(3):451–457.
  • Sakurai S, Tomita K, Hashimoto K, et al. Preparation of the nanowire form of ε-Fe2O3 single crystal and a study of the formation process. J Phys Chem C. 2008;112(51):20212–20216.
  • Danno T, Nakatsuka D, Kusano Y, et al. Crystal structure of β-Fe2O3 and topotactic phase transformation to α-Fe2O3, cryst. Growth Des. 2013;13:770–774.
  • Cao D, Li H, Pan L, et al. High saturation magnetization of γ 3-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci Rep. 2016;6:32360.
  • Carmona-Carmona AJ, Palomino-Ovando MA, Hernández-Cristobal O, et al. Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal. J Cryst Growth. 2017;462:6–11.
  • Glasscock JA, Barnes PRF, Plumb IC, et al. Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films. 2008;516(8):1716–1724.
  • Sartoretti CJ, Alexander BD, Solarska R, et al. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J Phys Chem B. 2005;109(28):13685–13692.
  • Yun Cheang T, Tang B, Wu Xu A, et al. Promising plasmid DNA vector based on APTESmodified silica nanoparticles. Int J Nanomedicine. 2012;7:1061–1067.
  • Zhang Q, Chen C, Wang M, et al. Facile preparation of highly-dispersed cobaltsilicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Res Lett. 2011;6:586.
  • Farahmandjou MJ, Soflaee F. Low temperature synthesis of α-Fe2O3 nano-rods using simple chemical route. J Nanostruct. 2014;4:413–418.
  • Belkhedkar MR, Ubale AU. Preparation and characterization of nanocrystalline α-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method. Int J Mater Chem. 2014;4:109–116.
  • Mohapatra M, Layek S, Anand S, et al. Structural and magnetic properties of Mg-doped nano-α-Fe2O3 particles synthesized by surfactant mediation-precipitation technique. Phys Status Solidi B. 2013;250(1):65–72.
  • Rahman MM, Khan SB, Jamal A, et al. Iron oxide nanoparticles. Vienna: IntechOpen. 2011.
  • Jackson SD, Hargreaves JSJ, editors. Metal oxide catalysis. Weinheim: Wiley-VCH; 2009.
  • Escobedo Morales A, Sánchez Mora E, Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fis S. 2007;53:18–22.
  • Murphy AB. Modified Kubelka Munk model for calculation of the reflectance of coatings with optically rough surfaces. J Phys D Appl Phys. 2006;39(16):3571–3581.
  • Tauc J, editor. Amorphous and liquid semiconductors. New York: Springer; 1974.
  • Salh R. Defect related luminescence in silicon dioxide network: a review. In: Basu S, editor. Crystalline silicon: properties and uses. Rijeka: InTech; 2013.
  • Ruso JM, Gravina AN, D’Elía NL, et al. Highly efficient photoluminescence of SiO2 and Ce-SiO2 microfibres and microparticles. Dalt Trans. 2013;42:7991–8000.
  • Farahmandjou M, Soflaee F. Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys Chem Res. 2015;3:191–196.
  • Mohammadikish M. Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceram Int. 2014;40:1351–1358.
  • Bazhan Z, Ghodsi FE, Mazloom J. The surface wettability and improved electrochemical performance of nanostructured CoxFe3−xO4 thin film. Surf Coatings Technol. 2017;309:554–562.
  • Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis. J Solid State Chem. 1996;126(2):227–234.
  • Goodenough JB. Metallic oxides. Prog Solid State Chem. 1971;5:145–399.
  • Balberg I, Pinch HL. The optical absorption of iron oxides. J Magn Magn Mater. 1978;7:12–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.