226
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The corrosion behavior of the SnO2-coated mild steel in HCl solution at different temperature

, ORCID Icon &
Pages 419-435 | Received 20 Apr 2020, Accepted 04 Aug 2020, Published online: 17 Aug 2020

References

  • Tao Z, Zhang S, Li W, et al. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives. Corros Sci. 2009;51(11):2588–2595.
  • Parveen G, Bashir S, Thakur A, et al. Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution. Mater Res Express. 2019;7(1):016510.
  • Bashir S, Sharma V, Lgaz H, et al. The inhibition action of analgin on the corrosion of mild steel in acidic medium: A combined theoretical and experimental approach. J Mol Liq. 2018;263:454–462.
  • Bashir S, Thakur A, Lgaz H, et al. Computational and experimental studies on Phenylephrine as anti-corrosion substance of mild steel in acidic medium. J Mol Liq. 2019;293:111539.
  • Menaka R, Subhashini S. Chitosan Schiff base as eco-friendly inhibitor for mild steel corrosion in 1 M HCl. J Adhes Sci Technol. 2016;30(15):1622–1640.
  • Wang H-L, Fan H-B, Zheng J-S. Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound. Mater Chem Phys. 2003;77(3):655–661.
  • Mourya P, Banerjee S, Singh MM. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros Sci. 2014;85:352–363.
  • Bentiss F, Lagrenee M, Traisnel M, et al. The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corros Sci. 1999;41(4):789–803.
  • Zhang J, Ur Rahman Z, Zheng Y, et al. Nanoflower like SnO2–TiO2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel. Appl Surf Sci. 2018;457:516–521.
  • Bashir S, Thakur A, Lgaz H, et al. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: an experimental and computational study. Arab J Sci Eng. 2020;45(6):4773–4783.
  • Branzoi F, Pahom Z, Nechifor G. Corrosion protection of new composite polymer coating for carbon steel in sulfuric acid medium by electrochemical methods. J Adhes Sci Technol. 2018;32(21):2364–2380.
  • Ashassi-Sorkhabi H, Kazempour A. Influence of fluid flow on the performance of polyethylene glycol as a green corrosion inhibitor. J Adhes Sci Technol. 2020;34(15):1653–1663.
  • Zor S, Ilmieva N. Corrosion behavior of PANI/Epoxy/nano SnO2 polymeric nanocomposite coated stainless steel in 3.5 wt% NaCl. Polym Compos. 2018;39(S4):E2415–E2425.
  • Christopher G, Kulandainathan MA, Harichandran G. Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites. Prog Org Coat. 2015;89:199–211.
  • Li H, Liang K, Mei L, et al. Oxidation protection of mild steel by zirconia sol–gel coatings. Mater Lett. 2001;51(4):320–324.
  • Vassilev VM, Stambolova I, Yordanov S, et al. Preparation of sol–gel SiO2 coatings on steel and their corrosion resistance. MATEC Web Conf. 2018;145:05011.
  • Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat. 2009;64(4):327–338.
  • Yang L, Wan Y, Qin Z, et al. Fabrication and corrosion resistance of a graphene-tin oxide composite film on aluminium alloy 6061. Corros Sci. 2018;130:85–94.
  • Winnicki M, Baszczuk A, Rutkowska-Gorczyca M, et al. Corrosion resistance of tin coatings deposited by cold spraying. Surf Eng. 2016;32(9):691–700.
  • Wang H, Turner JA. SnO2: F coated ferritic stainless steels for PEM fuel cell bipolar plates. J Power Sources. 2007;170(2):387–394.
  • Nam ND, Kim MJ, Jang YW, et al. Effect of tin on the corrosion behavior of low-alloy steel in an acid chloride solution. Corros Sci. 2010;52(1):14–20.
  • Liu B, Mu X, Yang Y, et al. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere. J Mater Sci Technol. 2019;35(7):1228–1239.
  • Rasitha TP, Vanithakumari SC, George RP, et al. Porous microcapsule-based regenerating superhydrophobic coating on 304L SS and its corrosion properties. J Materi Eng Perform. 2019;28(11):7047–7057.
  • Jena G, Anandkumar B, Vanithakumari SC, et al. Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Prog Org Coat. 2020;139:105444.
  • Jena G, Vanithakumari SC, Polaki SR, et al. Electrophoretically deposited graphene oxide–polymer bilayer coating on Cu–Ni alloy with enhanced corrosion resistance in simulated chloride environment. J Coat Technol Res. 2019;16(5):1317–1335.
  • Rasitha TP, Vanithakumari SC, George RP, et al. Template-free one-step electrodeposition method for fabrication of robust superhydrophobic coating on ferritic steel with self-cleaning ability and superior corrosion resistance. Langmuir. 2019;35(39):12665–12679.
  • Ji X, Bai C, Zhao Q, et al. Facile synthesis of porous SnO2 quasi-nanospheres for photocatalytic degradation of rhodamine B. Mater Lett. 2017;189:58–61.
  • Guan C, Wang X, Zhang Q, et al. Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 2014;14(8):4852–4858.
  • Liu H, Liu T, Dong X, et al. A novel fabrication of SnO2@graphene oxide core/shell structures with enhanced visible photocatalytic activity. Mater Lett. 2014;126:36–38.
  • Ateş S, Baran E, Yazıcı B. Fabrication of Al2O3 nanopores/SnO2 and its application in photocatalytic degradation under UV irradiation. Mater Chem Phys. 2018;214:17–27.
  • Liu Y, Jiao Y, Zhang Z, et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces. 2014;6(3):2174–2184.
  • Niu H, Zhang S, Wang R, et al. Dye-sensitized solar cells employing a multifunctionalized hierarchical SnO2 nanoflower structure passivated by TiO2 nanogranulum. J Phys Chem C. 2014;118(7):3504–3513.
  • Zhou X, Fu W, Yang H, et al. Facile fabrication of transparent SnO2 nanorod array and their photoelectrochemical properties. Mater Lett. 2013;93:95–98.
  • Deepa K, Venkatesha TV. Combustion synthesis of Ni doped SnO2 nanoparticles for applications in Zn-composite coating on mild steel. J Sci Adv Mater Devices. 2018;3(4):412–418.
  • Chen Z, Jin Y, Yang W, et al. Fabrication and characterization of polypyrrole coatings by embedding antimony modified SnO2 nanoparticles. J Ind Eng Chem. 2019;75:178–186.
  • Malav JK, Rathod R, Umare S, et al. Production, measurements and anticorrosion properties of electroactive polyimide/tin oxide nanocomposites. Mater Res Express. 2019;6(6):065306.
  • Aziz M, Saber Abbas S, Wan Baharom WR. Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett. 2013;91:31–34.
  • Savarimuthu E, Sankarasubramanian N, Subramanian B, et al. Preparation and characterisation of nanostructured tin oxide (SnO2) films by sol–gel spin coating technique. Surf Eng. 2006;22(4):268–276.
  • Serventi A, Rickerby D, Horrillo M, et al. Transmission electron microscopy investigation of the effect of deposition conditions and a platinum layer in gas-sensitive rf-sputtered SnO2 films. Thin Solid Films. 2003;445(1):38–47.
  • Howson R, Barankova H, Spencer A. Reactive sputtering of electrically conducting tin oxide. Thin Solid Films. 1991;196(2):315–321.
  • Kim Y-I, Nahm SH, Jung M-J. Structural refinement of SnO2 thin film prepared by plasma-enhanced chemical vapor deposition. Mater Lett. 2003;57(22-23):3653–3659.
  • Lin Y-J, Wu C-J. The properties of antimony-doped tin oxide thin films from the sol–gel process. Surf Coat Technol. 1997;88(1-3):239–247.
  • Rizzato A, Pulcinelli SH, Santilli CV, et al. Surface protection of fluoroindate glasses by sol–gel dip-coated SnO2 thin layers. J Non-Cryst Solids. 1999;256-257:154–159.
  • Yun H, Zhang ZG, Xu QJ, et al. Enhanced anticorrosion properties of SnO2 coatings in simulated PEMFC environments by hydrothermal treatment. AMR. 2013;860-863:793–796.
  • Zhou MJ, Zeng ZO, Zhong L. Energy storage ability and anti-corrosion protection properties of TiO2–SnO2 system. Mater Corros. 2010;61(4):324–327.
  • Pan J, Song X, Zhang J, et al. Switchable wettability in SnO2 nanowires and SnO2@SnO2 heterostructures. J Phys Chem C. 2011;115(45):22225–22231.
  • Majumder M, Chopra N, Andrews R, et al. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature. 2005;438(7064):44.
  • Sangchay W. Contact angle of TiO2/SnO2 thin films coated on glass substrate. Walailak J Sci Technol (WJST). 2014;11:429–436.
  • Gupta A, Srivastava C. Enhanced corrosion resistance by SnCu-graphene oxide composite coatings. Thin Solid Films. 2019;669:85–95.
  • Jung YC, Bhushan B. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology. 2006;17(19):4970–4980.
  • Yüce AO, Kardaş G. Adsorption and inhibition effect of 2-thiohydantoin on mild steel corrosion in 0.1 M HCl. Corros Sci. 2012;58:86–94.
  • Baran E, Cakir A, Yazici B. Inhibitory effect of Gentiana olivieri extracts on the corrosion of mild steel in 0.5 M HCl: electrochemical and phytochemical evaluation. Arabian J Chem. 2019;12(8):4303–4319.
  • Behpour M, Ghoreishi SM, Khayatkashani M, et al. Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Mater Chem Phys. 2012;131(3):621–633.
  • Tansuğ G, Tüken T, Giray E, et al. A new corrosion inhibitor for copper protection. Corros Sci. 2014;84:21–29.
  • Torres VV, Rayol VA, Magalhães M, et al. Study of thioureas derivatives synthesized from a green route as corrosion inhibitors for mild steel in HCl solution. Corros Sci. 2014;79:108–118.
  • Solmaz R. Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene) rhodanine. Corros Sci. 2014;79:169–176.
  • Hamani H, Douadi T, Al-Noaimi M, et al. Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Corros Sci. 2014;88:234–245.
  • Avci G. Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl. Colloids Surf, A. 2008;317(1-3):730–736.
  • Hassan HH, Abdelghani E, Amin MA. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: part I. Polarization and EIS studies. Electrochim Acta. 2007;52(22):6359–6366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.