200
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Selection of friction stir welding tool rotational speed for joining dual phase DP600 steel sheets – an experimental approach

ORCID Icon &
Pages 751-776 | Received 18 May 2020, Accepted 05 Sep 2020, Published online: 07 Oct 2020

References

  • Mekonnen AF, Mahmut AS. Materials used in automotive manufacture and material selection using Ashby charts. Int J Mater Eng. 2018;8(3):40–54.
  • Mock P. EU CO2 standards for passenger cars and light-commercial vehicles [Internet]. Washington (DC): International Council on Clean Transportation; 2014. Available from: retrieved from http://theicct.org/eu-co2-standards-passenger-cars-and-lcvs [cited 2014.01.17]
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R: Rep. 2005;50(1–2):1–78.
  • Sameer MD, Birru AK. Investigations on microstructural evolutions and mechanical properties of dual-phase 600 steel and AA6082-T6 aluminum alloy dissimilar joints fabricated by friction stir welding. Trans Indian Inst Met. 2019;72(2):353–367.
  • Guo C, Shen Y, Hou W, et al. Effect of groove depth and plunge depth on microstructure and mechanical properties of friction stir butt welded AA6061-T6. J Adhes Sci Technol. 2018;32(24):2709–2726.
  • Gupta MK. Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. J Adhes Sci Technol. 2020;34(18):2000–2010.
  • Yin K, Cao L, Wang N. Mechanical properties and residual stresses of 5083 to AM60B dissimilar friction stir welding with different process parameters. J Adhes Sci Technol. 2019;33(23):2615–2629.
  • Mahmoudiniya M, Kokabi AH, Kheirandish S, et al. Microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel. Mater Sci Eng A. 2018;737:213–222.
  • Ramesh R, Dinaharan I, Kumar R, et al. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels. Mater Sci Eng A. 2017;687:39–46.
  • Kumar S, Murugan N, Ramachandran KK. Effect of friction stir welding on mechanical and microstructural properties of AISI 316L stainless steel butt joints. Weld World. 2019;63(1):137–150.
  • Ragu Nathan S, Balasubramanian V, Malarvizhi S, et al. n investigation on metallurgical characteristics of tungsten based tool materials used in friction stir welding of naval grade high strength low alloy steels. Int J Refract Met Hard Mater. 2016;56:18–26.
  • Caetano GDQ, Silva CC, Motta MF, et al. Influence of rotation speed and axial force on the friction stir welding of AISI 410S ferritic stainless steel. J Mater Process Technol. 2018;262:430–436.
  • Emami S, Saeid T, Khosroshahi RA. Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel. J Alloys Compd. 2018;739:678–689.
  • Ghosh M, Kumar K, Mishra RS. Friction stir lap welded advanced high strength steels: microstructure and mechanical properties. Mater Sci Eng, A. 2011;528(28):8111–8119.
  • Lakshminarayanan AK. Enhancing the properties of friction stir welded stainless steel joints via multi-criteria optimization. Arch Civil Mech Eng. 2016;16(4):605–617.
  • Li H, Yang S, Zhang S, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654. Mater Des. 2017;118:207–217.
  • Aktarer SM, Küçükömeroğlu T, Davut K. Friction stir processing of dual phase steel: microstructural evolution and mechanical properties. Mater Charact. 2019;155:109787.
  • Lee H, Kim C, Song J. An evaluation of global and local tensile properties of friction-stir welded DP980 dual-phase steel joints using a digital image correlation method. Materials. 2015;8(12):8424–8436.
  • Wang ZW, Xie GM, Wang D, et al. Microstructural evolution and mechanical behavior of friction-stir-welded DP1180 advanced ultrahigh strength steel. Acta Metall Sin. 2020;33(1):58–66.
  • Gotawala N, Wadighare A, Shrivastava A. Phase transformation during friction stir processing of dual-phase 600 steel. J Mater Sci. 2020;55(10):4464–4477.
  • Miles MP, Pew J, Nelson T, Wet al. Comparison of formability of friction stir welded and laser welded dual phase 590 steel sheets. Sci Technol Weld Joining. 2006;11(4):384–388.
  • Miles MP, Nelson TW, Steel R, et al. Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel. Sci Technol Weld Joining. 2009;14(3):228–232.
  • Saunders N, Miles M, Hartman T, et al. Joint strength in high speed friction stir spot welded DP 980 steel. Int J Precis Eng Manuf. 2014;15(5):841–848.
  • Olsen ME. Friction Stir Welding of High-Strength Automotive Steel [Master’s thesis]. Provo (UT): Brigham Young University; 2007.
  • Bang KS, Park C, Chang WS, et al. Influence of heat input on mechanical properties of multipass low-alloy steel weld metal. Mater Sci Forum. 2008;580–582:17–20.
  • Kumar R, Singh K, Pandey S. Process forces and heat input as function of process parameters in AA5083 friction stir welds. Trans Nonferrous Metals Soc China. 2012;22(2):288–298.
  • Yi D, Onuma T, Mironov S, et al. Evaluation of heat input during friction stir welding of aluminium alloys. Sci Technol Weld Joining. 2017;22(1):41–46.
  • Muthumanickam A, Gandham P, Dhenuvakonda S. Effect of friction stir welding parameters on mechanical properties and microstructure of AA2195 Al–Li alloy welds. Trans Indian Inst Met. 2019;72(6):1557–1561.
  • Husain MM, Sarkar R, Pal TK, et al. Friction stir welding of steel: heat input, microstructure, and mechanical property co-relation. J Mater Eng Perform. 2015;24(9):3673–3683.
  • Frigaard Ø, Grong Ø, Midling OT. A process model for friction stir welding of age hardening aluminum alloy. Metall Mat Trans A. 2001;32(5):1189–1200.
  • Wang J, Yang L, Sun M, et al. A study of the softening mechanisms of laser-welded DP1000 steel butt joints. Mater Des. 2016;97:118–125.
  • Biro E, McDermid JR, Embury JD, et al. Softening kinetics in the subcritical heat-affected zone of dual-phase steel welds. Metall Mat Trans A. 2010;41(9):2348–2356.
  • Ghomashchi R, Costin W, Kurji R. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: a case study. Mater Charact. 2015;107(7993):317–326.
  • Kumar BR, Mahato B, Sharma S, et al. Effect of cyclic thermal process on ultrafine grain formation in AISI 304L austenitic stainless steel. Metall Mater Trans A. 2009;40(1):3226–3234.
  • Kumar BR, Das SK, Sharma S, et al. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel. Mater Sci Eng A. 2010;527(4–5):875–882.
  • Kumar B, Singh V, Nanda T, et al. Effect of tailoring martensite shape and spatial distribution on tensile deformation characteristics of dual phase steels. J Eng Mater Technol. 2018;140(2):1–11.
  • Heidarzadeh A, Motalleb-Nejad P, Barenji RV, et al. The origin of the maximum hardness of the friction stir welded single-phase Cu-Zn plates: RSM, EBSD, and TEM investigation. Mater Chem Phys. 2018;223(1):9-15.
  • Suwanpinij P, Prahl U, Bleck W, et al. Fast algorithms for phase transformations 32 in dual phase steels on a hot strip mill run-out table (ROT). Arch Civ Mech Eng. 2012;12(3):305–311.
  • Akram J, Kalvala PR, Jindal V, et al. Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling. Defence Technol. 2018;14(2):83–92.
  • Arbegast WJ, Hartley PJ. Trends in welding research. Paper presented at the 5th International Conference on Trends in Welding Research; 1998 June 1–5; Pine Mountain, GA.
  • Heidarzadeh A, Barenji RV, Khalili V, et al. Optimizing the friction stir welding of the α/β brass plates to obtain the highest strength and elongation. Vacuum. 2019;159:152–160.
  • Mohammed S, Birru AK. Friction stir welding of AA6082 thin aluminium alloy reinforced with Al2O3 nanoparticles. Trans Indian Ceramic Soc. 2019;78(3):137–145.
  • Yang J, Xiao BL, Wang D, et al. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy. Mater Sci Eng: A. 2010;527(3):708–714.
  • Heidarzadeh A, Chabok A, Pei Y. Friction stir welding of Monel alloy at different heat input conditions: microstructural mechanisms and tensile behavior. Mater Lett. 2019;245:94–97.
  • Joo MS, Noh K, Kim W, et al. A study of metallurgical factors for defect formation in electric resistance welded API steel pipes. Metallurgical Mater. Trans E. 2015;2(2):119–130.
  • Küçükömero T, Aktarer SM, Çam G. Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel 2019. IOP Conf Ser: Mater Sci Eng. 2019;629:012010.
  • Guo R, Shen Y, Huang G, et al. Microstructures and mechanical properties of thin 304 stainless steel sheets by friction stir welding. J Adhes Sci Technol. 2018;32(12):1313–1323.
  • Kuril AA, Janaki Ram GD, Bakshi SR. Microstructure and mechanical properties of keyhole plasma arc welded dual phase steel DP600. J Mater Process Technol. 2019;270:28–36.
  • Heidarzadeh A, Testik ÖM, Güleryüz G, et al. Development of a fuzzy logic based model to elucidate the effect of FSW parameters on the ultimate tensile strength and elongation of pure copper joints. J Manuf Processes. 2020;53:250–259.
  • Cunha P, Lemos GVB, Bergmann L, et al. Effect of welding speed on friction stir welds of GL E36 shipbuilding steel. J Mater Res Technol. 2019;8(1):1041–1051.
  • Fowler S, Toumpis A, Galloway A. Fatigue and bending behaviour of friction stir welded DH36 steel. Int J Adv Manuf Technol. 2016;84(9–12):2659–2669.
  • Johnson P, Murugan N. Microstructure and mechanical properties of friction stir welded AISI321 stainless steel. J Mater Res Technol. 2020;9(3):3967–3976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.