415
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of characterization and tribological behavior of composite oxide coatings doped with h-BN and graphite particles on ZA-27 alloy by micro-arc oxidation

ORCID Icon, &
Pages 1305-1319 | Received 04 Aug 2020, Accepted 23 Oct 2020, Published online: 09 Nov 2020

References

  • Pratt GC. Materials for plain bearings. Int Metall Rev. 1973;18(2):62–88.
  • Apelian D, Paliwal M, Herrschaft DC. Casting with zinc alloys. J Met. 1981;33(11):12–20.
  • Gervais E, Barnhurst RJ, Loong CA. An analysis of selected properties of ZA alloys. J Met. 1985;37(11):43–47.
  • Delneuville P. Tribological behaviour of ZnAl alloys (ZA27) compared with bronze when used as a bearing material with high load and at very low speed. Wear. 1985;105(4):283–292.
  • Barnhurst RJ. Designing zinc alloy bearings. J Mater Eng. 1990;12(4):279–285.
  • Owoeye SS, Folorunso DO, Oji B, et al. Zinc-aluminum (ZA-27)-based metal matrix composites: a review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. Int J Adv Manuf Technol. 2019;100(1–4):373–380.
  • Gervais E, Levert H, Bess M. The development of a family of zinc-based foundry alloys. AFS Trans. 1980;88:183–194.
  • Abou El-Khair MT, Daoud A, Ismail A. Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy. Mater Lett. 2004;58(11):1754–1760.
  • Calayag T, Ferres D. High-performance, high-aluminum zinc alloys for low-speed bearings and bushings. SAE Int. 1982;91(2):2241–2251.
  • Savaskan T, Murphy S. Comparative wear behaviour of Zn-Al-based alloys in an automotive engine application. Wear. 1984;98:151–161.
  • Pola A, Montesano L, Gelfi M, et al. Comparison of the sliding wear of a novel Zn alloy with that of two commercial Zn alloys against bearing steel and leaded brass. Wear. 2016;368–369:445–452.
  • Chen Y, Tu M. Dimensional shrinkage of supersaturated ZA27Cu1 and ZA27Cu2 alloys. Mater Sci Technol. 1998;14(5):473–475.
  • Chen TJ, Yuan CR, Fu MF, et al. In situ silicon particle reinforced ZA27 composites: part 1-miscorstructures and tensile properties. Mater Sci Technol. 2008;24(11):1321–1332.
  • Choudhury P, Das S, Datta BK. Effect of Ni on the wear behavior of a zinc-aluminum. J Mater Sci. 2002;37(10):2103–2107.
  • Savaskan T, Purcek G, Hekimoglu P. Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys. Tribol Lett. 2003;15(3):257–263.
  • Babic M, Mitrović S, Zivic F. Effects of Al2O3 particle reinforcement on the lubricated sliding wear behavior of ZA-27 alloy composites. J Mater Sci. 2011;46(21):6964–6974.
  • Mondal DP, Goel MD, Bagde N, et al. Closed cell ZA27-SiC foam made through stir-casting technique. Mater Des. 2014;57:315–324.
  • Abou El-Khair MT, Lotfy A, Daoud A, et al. Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites. Mater Sci Eng A. 2011;528(6):2353–2362.
  • Babic M, Mitrovic S, Jeremic B. The influence of heat treatment on the sliding wear behavior of a ZA-27 alloy. Tribol Int. 2010;43(1–2):16–21.
  • Liu Y, Li HY, Jiang HF, et al. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Trans Nonferrous Met Soc China. 2013;23(3):642–649.
  • Aashuri H. Globular structure of ZA27 alloy by thermomechanical and semi-solid treatment. Mater Sci Eng A. 2005;391(1-2):77–85.
  • Chen TJ, Hao Y, Sun J, et al. Effects of processing parameters on tensile properties and hardness of thixoformed ZA27 alloy. Mater Sci Eng A. 2004;382(1–2):90–103.
  • Chen TJ, Hao Y, Li YD. Effects of processing parameters on microstructure of thixoformed ZA27 alloy. Mater Des. 2007;28(4):1279–1287.
  • Chen TJ, Hao Y, Sun J, et al. Phenomenological observations on thixoformability of a zinc alloy ZA27 and the resulting microstructures. Mater Sci Eng A. 2005;396(1–2):213–222.
  • Ma Y, Liu H, Hao Y, et al. Competitive growth of grains in ZA alloys during continuous casting with heated mould. Int J Cast Met Res. 2005;18(1):55–58.
  • Seah KHW, Sharma SC, Girish BM. Mechanical properties of cast ZA-27/graphite particulate composites. Mater Des. 1995;16(5):271–275.
  • Seah KHW, Sharma SC, Girish BM. Mechanical properties of as-cast and heat-treated ZA27/graphite particulate composites. Compos A. 1997;28(3):251–256.
  • Sharma SC, Girish BM, Kamath R, et al. Graphite particles reinforced ZA-27 alloy composite materials for journal bearing application. Wear. 1998;219(2):162–168.
  • Bobić M, Slobodan M, Džunic D, et al. Tribological behavior of composites based on ZA-27 alloy reinforced with graphite particles. Tribol Lett. 2010;37(2):401–410.
  • Girish BM, Prakash KR, Satish BM, et al. An investigation into the effects of graphite particles on the damping behavior of ZA-27 alloy composite material. Mater Des. 2011;32(2):1050–1056.
  • Girish BM, Prakash KR, Satish BM, et al. Need for optimization of graphite particle reinforcement in ZA-27 alloy composites for tribological applications. Mater Sci Eng A. 2011;530(1):382–388.
  • Mitrović S, Babic M, Miloradovic M, et al. Wear characteristics of hybrid composites based on ZA27 alloy reinforced with silicon carbide and graphite particles. Tribol Int. 2014;36(2):204–210.
  • Güler O, Çuvalcı H, Gökdağ M, et al. Tribological behavior of ZA27/Al2O3/graphite hybrid nanocomposites. Part Sci Technol. 2018;36(7):899–907.
  • Funatani K. Emerging technology in surface modification of light metals. Surf Coat Technol. 2000;133-134:264–272.
  • Yeh RY, Hsu RQ. Application of porous oxide layer in plastic/metal direct adhesion by injection molding. J Adhes Sci Technol. 2015;29(15):1617–1627.
  • Sukuroglu EE, Farzi H, Sukuroglu S, et al. The effect of plasma electrolytic oxidation process parameters on the tribocorrosion properties of TiO2 coatings. J Adhes Sci Technol. 2017;31(12):1361–1373.
  • Srinivasan PB, Blawert C, Dietzel W. Dry sliding wear behaviour of plasma electrolytic oxidation coated AZ91 cast magnesium alloy. Wear. 2009;266(11–12):1241–1247.
  • Wu X, Qin W, Guo Y, et al. Self-lubricate coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate-graphite. Appl Surf Sci. 2008;254(20):6395–6399.
  • Ao N, Liu D, Wang S, et al. Microstructure and tribological behavior of a TiO2/h-BN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V alloy. J Mater Sci Technol. 2016;32(10):1071–1076.
  • Wang Z, Wu L, Qi Y, et al. Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminium alloy. Surf Coat Technol. 2010;204(20):3315–3318.
  • Kucukosman R, Sukuroglu EE, Totik Y, et al. Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy. J Adhes Sci Technol. 2020. https://doi.org/10.1080/01694243.2020.1800289
  • Bian G, Wang L, Wu J, et al. Effects of electrolytes on the growth behavior, microstructure and tribological properties of plasma electrolytic oxidation coatings on a ZA27 alloy. Surf Coat Technol. 2015;277:251–257.
  • Li G, Mao Y, Li Z, et al. Tribological and corrosion properties of coatings produced by plasma electrolytic oxidation on the ZA27 Alloy. J. of Materi Eng and Perform. 2018;27(5):2298–2305.
  • Khaselev O, Yahalom J. The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions. Corros Sci. 1998;40(7):1149–1160.
  • Sankara TSN, Park IS, Lee MH. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci. 2014;60:1–71.
  • Cheng YL, Qin TW, Li LL, et al. Comparison of corrosion resistance of microarc oxidation coatings prepared with different electrolyte concentrations on AM60 magnesium alloy. Corros Eng Sci Technol. 2011;46(1):17–23.
  • Shi L, Xu Y, Li K, et al. Effect of additives on structure and corrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation. Curr Appl Phys. 2010;10(3):719–723.
  • Lv GH, Chen H, Gu WC, et al. Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of Alumina PEO coatings. Curr Appl Phys. 2009;9(2):324–328.
  • Pezzato L, Angelini V, Brunelli K, et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Trans Nonferrous Met Soc China. 2018;28(2):259–272.
  • Yin B, Peng Z, Liang J, et al. Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol Int. 2016;97:97–107.
  • Mu W, Han Y. Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by microarc oxidation. Surf Coat Technol. 2008;202(17):4278–4284.
  • Zhang Y, Chen F, Zhang Y, et al. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg-Li alloy. Surf Coat Technol. 2019;364:144–156.
  • Butyagin PI, Khokhryakov Ye V, Mamaev AI. Microplasma systems for creating coatings on aluminium alloys. Mater Lett. 2003;57(11):1748–1751.
  • Liang J, Guo B, Tian J, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Appl Surf Sci. 2005;252(2):345–351.
  • Ma JM, Bosta M, Wu WT. Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution. Surf Coat Technol. 2014;259(Part B):318–324.
  • Matin R, Totik Y, Sukuroglu EE, Efeoglu I, et al. Effects of voltage on the components of surface integrity of Al2O3 ceramic coatings on AA2024 by plasma electrolytic oxidation. J Adhes Sci Technol. 2020;34(18):1971–1981.
  • Peitao G, Mingyang T, Chaoyang Z. Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surf Coat Technol. 2019;359:197–205.
  • Zhao J, Xie X, Zhang C. Effects of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros Sci. 2017;114:146–155.
  • Zuo Y, Li T, Yu P, et al. Effects of graphene oxide on tribocorrosion behaviour of MAO coatings prepared on Ti6Al4V alloy. Appl Surf Sci. 2019;480:26–34.
  • Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review. J Magnes Alloys. 2020; 8(3):799–818
  • Tonelli L, Pezzato L, Dolcet P, et al. Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation treated EV31A magnesium alloy against steel in air. Wear. 2018;404–405:122–132.
  • Patel VK, Bhowmik S. Plasma processing of aluminum alloys to promote adhesion: a critical review. Rev Adhes Adhesives. 2017;5(1):79–104.
  • Stojadinović N, Tadić R, Vasilić R. Formation and characterization of ZnO films on zinc substrate by plasma electrolytic oxidation. Surf. Coat Technol. 2016;307:650–657.
  • Turan ME, Sun Y, Akgul Y, et al. The effect of GNPs on wear and corrosion behaviors of pure magnesium. J Alloy Comp. 2017;724:14–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.