318
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Porosity-grain growth relationships in the laser beam deep penetration welding of 6061 aluminum alloy

, , , &
Pages 1372-1392 | Received 21 Jul 2020, Accepted 28 Oct 2020, Published online: 22 Nov 2020

References

  • Horn WJ, Schmitt RR. Japanese aerospace literature this month: aluminium alloys. AIAA J. 2014;33(3):575–576.
  • Jicai F, Huiqiang W, Jingshan H, et al. Microstructure evolution of electron beam welded Ti3Al–Nb joint. Mater Charact. 2005;54(2):99–105.
  • Zhan X, Zhou J, Sun W, et al. Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy. Appl Phys A. 2017;123(1):106.
  • Cao X, Jahazi M, Immarigeon JP, et al. A review of laser welding techniques for magnesium alloys. J Mater Process Tech. 2006;171(2):188–204.
  • Farzadi A, Do-Quang M, Serajzadeh S, et al. Phase-field simulation of weld solidification microstructure in an Al–Cu alloy. Modell Simul Mater Sci Eng. 2008;16(6):065005.
  • Koseki T, Inoue H, Fukuda Y, et al. Numerical simulation of equiaxed grain formation in weld solidification. Sci Technol Adv Mater. 2003;4(2):183–195.
  • Wei YH, Zhan XH, Dong ZB, et al. Numerical simulation of columnar dendritic grain growth during weld solidification process. Sci Technol Weld Joining. 2007;12(2):138–146.
  • Lambrakos SG. Temperature histories of structural steel welds calculated using solidification-boundary constraints. J Mater Eng Perform. 2016;25(9):4070–4011.
  • Zhan X, Lin X, Gao Z, et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy. J Alloys Compound. 2018;755:123–134.
  • Atwood RC, Sridhar S, Zhang W, et al. Diffusion-controlled growth of hydrogen pores in aluminium–silicon castings: in situ observation and modelling. Acta Mater. 2000;48(2):405–417.
  • Anson JP. The nucleation and growth of microporosity in aluminum-7% silicon foundry alloy [thesis]. Montreal: McGill University; 2000.
  • Lee PD, Chirazi A, Atwood RC, et al. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al–Si–Cu alloy. Mater Sci Eng A. 2004;365(1–2):57–65.
  • Dong S, Xiong S, Liu B. Numerical simulation of microporosity evolution of aluminum alloy castings. J Mater Sci Technol. 2004;20(001):23–26.
  • Sasikumar R, Walker MJ, Savithri S, et al. Initiation of microporosity from pre-existing bubbles: a computational study. Modell Simul Mater Sci Eng. 2008; 16(3):035009.
  • Karagadde S, Sundarraj S, Dutta P. Modeling growth of hydrogen bubbles in aluminum castings using the level-set method. Scr Mater. 2009;61(2):216–219.
  • Meidani H, Jacot A. Phase-field simulation of micropores constrained by the dendritic network during solidification. Acta Mater. 2011;59(8):3032–3040.
  • Meidani H, Desbiolles J-L, Jacot A, et al. Three-dimensional phase-field simulation of micropore formation during solidification: morphological analysis and pinching effect. Acta Mater. 2012;60(6–7):2518–2527.
  • Xu C, Furukawa M, Horita Z, et al. The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP. Mater Sci Eng A. 2005;398(1–2):66–76.
  • Zhan X, Meng Y, Zhou J, et al. Quantitative research on microstructure and thermal physical mechanism in laser melting deposition for Invar alloy. J Manuf Process. 2018;31:221–231.
  • Zhan X, Wu Y, Kang Y, et al. Simulated and experimental studies of laser-MIG hybrid welding for plate-pipe dissimilar steel. Int J Adv Manuf Technol. 2019; 101(5–8):1611–1622.
  • Yu H, Zhan X, Kang Y, et al. Numerical simulation optimization for laser welding parameter of 5A90 Al-Li alloy and its experiment verification. J Adhes Sci Technol. 2019;33(2):137–155.
  • Zhan X, Zhang Q, Wang Q, et al. Numerical simulation of flow field in the invar alloy laser-MIG hybrid welding pool based on different heat source models. HFF. 2018;28(4):909–926.
  • Zhan X, Xia L, Wu Y, et al. Fracture mechanism on Al-Li alloy T-joint welded by dual laser-beam bilateral synchronous welding. Proc Inst Mech Eng B J Eng Manuf. 2018;233(10):2074–2088.
  • Zhu M, Li Z, An D, et al. Cellular automaton modeling of microporosity formation during solidification of aluminum alloys. ISIJ Int. 2014; 54(2):384–391.
  • Wang T, An D, Zhang Q, et al. Modeling of microporosity formation during solidification of aluminum alloys. IOP Conf Ser Mater Sci Eng. 2015;84:012046.
  • Li ZY, Zhu MF, Dai T. Simulation study on microscopic porosity formation of Al-7%Si Alloy. Acta Metall Sin. 2013;49(9):1032–1040.
  • Sun DK, Zhu MF, Dai T, et al. Modelling of dendritic growth in ternary alloy solidification with melt convection. Cast Metals. 2011;24(3-4):177–183.
  • Zhu M, Sun D, Pan S, et al. Modelling of dendritic growth during alloy solidification under natural convection. Modell Simul Mater Sci Eng. 2014;22(3):034006.
  • Huang JL, Warnken N, Gebelin JC, et al. On the mechanism of porosity formation during welding of titanium alloys. Acta Mater. 2012;60(6–7):3215–3225.
  • Zhan XH, Dong ZB, Wei YH, et al. Dendritic grain growth simulation in weld molten pool based on CA-FD model. Cryst Res Technol. 2008;43(3):253–259.
  • Xia L, Zhan X, Yu H, et al. Morphology and formation mechanism of equiaxed grains along the fusion boundary in Al-Li alloy weld seam. Mater Res Express. 2018;5(11):116523.
  • Liu T, Zhan X, Kang Y. The influence of thermal distribution on macro profile and dendrites morphology based on temperature field simulation of 6061 aluminum alloy laser welded joint. J Adhes Sci Technol. 2020;34:2144–2160.
  • Shen J, Li B, Hu S, et al. Comparison of single-beam and dual-beam laser welding of Ti-22A1-25Nb/TA15 dissimilar titanium alloys. Opt Laser Technol. 2017;93:118–126.
  • Zhan X, Yan T, Gao Q, et al. The porosity formation mechanism in the laser welded joint of TA15 titanium alloy. Mater Res Express. 2019;6(7):076558.
  • Kang Y, Zhan X, Liu T. Effect of welding parameters on porosity distribution of dual laser beam bilateral synchronous welding in 2219 aluminum alloy T-joint. J Adhes Sci Technol. 2019; 33(23):1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.