2,399
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Effect of heat treatments on microstructural and mechanical characteristics of dissimilar friction stir welded 2198/2024 aluminum alloys

, , , &
Pages 221-239 | Received 28 Dec 2020, Accepted 11 Apr 2021, Published online: 03 May 2021

References

  • Kumar Rajak D, Pagar DD, Menezes PL, et al. Friction-based welding processes: friction welding and friction stir welding. J Adhes Sci Technol. 2020;34(24):2613–2625.
  • Li C, Zhang D, Gao X, et al. Numerical simulation and experimental research on friction stir welding of 2024-T3 aeronautical aluminum alloy. J Adhes Sci Technol. 2021;(0):1-19
  • Mardalizadeh M, Khandaei M, Safarkhanian MA. Influence of travel speed on the microstructural evaluation and mechanical characteristics of bobbin tool friction stir welded thick AA5456-h112 plates. J Adhes Sci Technol. 2021;35(1):90–20.
  • Li X, Li C, Liang Z, et al. Research on the corrosion behavior of double-side friction stir welded 6082al alloy thick plate. J Adhes Sci Technol. 2020; (0):1–13.
  • Gopkalo O, Liu X, Long F, et al. Non-isothermal thermal cycle process model for predicting post-weld hardness in friction stir welding of dissimilar age-hardenable aluminum alloys. Mater Sci Eng: A. 2019;754:205–215.
  • Kumar PV, Reddy GM, Rao KS. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminum alloy friction stir welds-effect of post weld heat treatment. Defense Technol. 2015;11(4):362–369.
  • Baghdadi AH, Rajabi A, Selamat NFM, et al. Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater Sci Eng: A. 2019;754:728–734.
  • Kumar KA, Murigendrappa S, Kumar H. A bottom-up optimization approach for friction stir welding parameters of dissimilar AA2024-T351 and AA7075-T651 alloys. J Mater Eng Perform. 2017;26(7):3347–3367.
  • Park SW, Yoon TJ, Kang CY. Effects of the shoulder diameter and weld pitch on the tensile shear load in friction stir welding of AA6111/AA5023 aluminum alloys. J Mater Proc Technol. 2017;241:112–119.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.
  • Rioja RJ, Liu J. The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A. 2012;43(9):3325–3337.
  • Cavaliere P, Cabibbo M, Panella F, et al. 2198 Al-Li plates joined by friction stir welding: mechanical and microstructural behavior. Mater Des. 2009;30(9):3622–3631.
  • Bucior M, Kluz R, Kubit A, et al. Analysis of the possibilities of improving the selected properties surface layer of butt joints made using the FSW method. Adv Sci Technol Res J. 2020;14(1):1–9.
  • Bitondo C, Prisco U, Squilace A, et al. Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through doe analysis. Int J Adv Manuf Technol. 2011;53(5–8):505–516.
  • Ma YE, Xia Z, Jiang R, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 t8 aluminum-lithium alloy joints. Eng Fract Mech. 2013;114:1–11.
  • Wang B, Chen F, Liu F, et al. Enhanced mechanical properties of friction stir welded 5083al-h19 joints with additional water cooling. J Mater Sci Technol. 2017;33(9):1009–1014.
  • Sharma V, Sharma C, Upadhyay V, et al. Enhancing mechanical properties of friction stir welded joints of Al-Si-Mg alloy through post weld heat treatments. Mater Today: Proc. 2017;4(2):628–636.
  • Zhang Z, Wan Z, Lindgren LE, et al. The simulation of precipitation evolutions and mechanical properties in friction stir welding with post-weld heat treatments. J Mater Eng Perform. 2017;26(12):5731–5740.
  • Dewan MW, Wahab MA, Sharmin K. Effects of post weld heat treatments (PWHT) on friction stir welded AA2219-T87 joints. Paper presented at the 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing; 2017 June 4–8; Los Angeles, CA.
  • Chu G, Sun L, Lin C, et al. Effect of local post weld heat treatment on tensile properties in friction stir welded 2219-O al alloy. J Mater Eng Perform. 2017;26(11):5425–5431.
  • Moradi MM, Aval HJ, Jamaati R. Effect of pre and post welding heat treatment in sic- fortified dissimilar AA6061-AA2024 FSW butt joint. J Manufact Proc. 2017;30:97–105.
  • Cerri E, Leo P. Mechanical properties evolution during post-welding-heat treatments of double-lap friction stir welded joints. Mater Des. 2011;32(6):3465–3475.
  • Zhang J, Feng X, Gao J, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-t8 Al-Li alloy. J Mater Sci Technol. 2018;34(1):219–227.
  • Robe H, Zedan Y, Chen J, et al. Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3. Mater Characteriz. 2015;110:242–251.
  • Texier D, Zedan Y, Amoros T, et al. Near-surface mechanical heterogeneities in a dissimilar aluminum alloys friction stir welded joint. Mater Des. 2016;108:217–229.
  • Masoumi M, Zedan Y, Texier D, et al. The influence of tool geometry on mechanical properties of friction stir welded AA-2024 and AA-2198 joints. Saint-Colomban (Canada): The International Committee for Study of Bauxite, Alumina & Aluminium (ICSOBA); 2016.
  • Khalilabad MM, Zedan Y, Texier D, et al. Effect of tool geometry and welding speed on mechanical properties of dissimilar AA2198–AA2024 FSWed joint. J Manufact Proc. 2018;34:86–95.
  • Zhu C, Lv K, Chen B. On the s-phase precipitates in 2024 aluminum alloy: an atomic-scale investigation using high-angle annular dark-field scanning transmission electron microscopy. J Mater Res. 2020;35:1582–1589.
  • Lv K, Zhu C, Zheng J, et al. Precipitation of T1 phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. J Mater Res. 2019;34(20):3535–3544.
  • Chandler H. Heat treater’s guide: practices and procedures for nonferrous alloys. Materials Park (OH): ASM International; 1996.
  • Zhang Sf, Zeng Wd, Yang Wh, et al. Ageing response of a Al–Cu–Li 2198 alloy. Mater Des. 2014;63:368–374.
  • Bridier F, Stinville JC, Vanderesse N, et al. Microscopic strain and crystal rotation measurement within metallurgical grains. In: Key engineering materials. Vol. 592. Trans Tech Publ;Switzerland ;2014. p. 493–496.
  • Zhang C, Huang G, Cao Y, et al. Microstructure and mechanical properties of dissimilar friction stir welded AA2024-7075 joints: influence of joining material direction. Mater Sci Eng: A. 2019;766:138368.
  • Cho JH, Boyce DE, Dawson PR. Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mater Sci Eng: A. 2005;398(1–2):146–163.
  • Lin Y, Lu C, Wei C, et al. Influences of friction stir welding and post-weld heat treatment on Al–Cu–Li alloy. Adv Eng Mater. 2018;20(2):1700652.
  • Rodgers B, Prangnell P. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195. Acta Materialia. 2016;108:55–67.
  • Ringer S, Muddle B, Polmear I. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys. Metallurg Mater Transact A. 1995;26(7):1659–1671.
  • Dorin T, Deschamps A, De Geuser F, et al. Quantification and modeling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy. Acta Materialia. 2014;75:134–146.
  • Dorin T, Deschamps A, De Geuser F, et al. Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle x-ray scattering and transmission electron microscopy. Phil Magaz. 2014;94(10):1012–1030.
  • Genevois C, Deschamps A, Denquin A, et al. Quantitative investigation of precipitation and mechanical behavior for AA2024 friction stir welds. Acta Materialia. 2005;53(8):2447–2458.