213
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effect of adhesive and nanocomposite layers on lap shear strength of layup bonded joints

, &
Pages 731-747 | Received 16 Feb 2021, Accepted 24 May 2021, Published online: 21 Jun 2021

References

  • Grant LD, Adams RD, da Silva LFM. Experimental and numerical analysis of single-lap joints for the automotive industry. Int J Adhes Adhes. 2009;29(4):405–413.
  • Higgins A. Adhesive bonding of aircraft structures. Int J Adhes Adhes. 2000;20(5):367–376.
  • Owens JF, Lee-Sullivan P. Stiffness behaviour due to fracture in adhesively bonded composite-to-aluminum joints I. Theoretical model. Int J Adhes Adhes. 2000;20(1):39–45.
  • da Silva LFM, Carbas RJC, Critchlow GW, et al. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int J Adhes Adhes. 2009;29(6):621–632.
  • Banea MD, da Silva LF, Carbas R, et al. Effect of material on the mechanical behaviour of adhesive joints for the automotive industry. J Adhes Sci Technol. 2017;31(6):663–676.
  • Banea MD, da Silva LFM. Mechanical characterization of flexible adhesives. J Adhes. 2009;85(4-5):261–285.
  • da Silva LFM, Critchlow GW, Figueiredo MAV. Parametric study of adhesively bonded single lap joints by the Taguchi method. J Adhes Sci Technol. 2008;22(13):1477–1494.
  • da Silva LFM, Rodrigues TNSS, Figueiredo MAV, et al. Effect of adhesive type and thickness on the lap shear strength. J Adhes. 2006;82(11):1091–1115.
  • Gleich DM, Van Tooren MJ, Beukers A. Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J Adhes Sci Technol. 2001;15(9):1091–10101.
  • Adams RD, Peppiatt NA. Stress analysis of adhesive-bonded lap joints. J Strain Anal Eng Des. 1974;9(3):185–196.
  • Crocombe AD. Global yielding as a failure criterion for bonded joints. Int J Adhes Adhes. 1989;9(3):145–153.
  • Banea MD, da Silva LFM, Campilho RDSG. The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive. J Adhes. 2015;91(5):331–346.
  • Gerson AL, Bruck HA, Hopkins AR, et al. Curing effects of single-wall carbon nanotube reinforcement on mechanical properties of filled epoxy adhesives. Compos Part A. Appl Sci Manuf. 2010;41(6):729–736.
  • Srivastava VK. Effect of carbon nanotubes on the strength of adhesive lap joints of C/C and C/C–SiC ceramic fiber composites. Int J Adhes Adhes. 2011;31(6):486–489.
  • Sydlik SA, Lee JH, Walish JJ, et al. Epoxy functionalized multi-walled carbon nanotubes for improved adhesives. Carbon. 2013;59:109–120.
  • Zhang J, Luo R, Yang C. A multi-wall carbon nanotube-reinforced high-temperature resistant adhesive for bonding carbon/carbon composites. Carbon. 2012;50(13):4922–4925.
  • Bhowmik S, Benedictus R, Poulis JA, et al. High-performance nanoadhesive bonding of titanium for aerospace and space applications. Int J Adhes Adhes. 2009;29(3):259–267.
  • Zhai L, Ling G, Li J, et al. The effect of nanoparticles on the adhesion of epoxy adhesive. Mater Lett. 2006;60(25–26):3031–3033.
  • May M, Wang HM, Akid R. Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol–gel epoxy system. Int J Adhes Adhes. 2010;30(6):505–512.
  • Park SW, Lee DG. Adhesion strength of glass/epoxy composite embedded with heat-treated carbon black on the surface. Compos A. Appl Sci Manuf. 2010;41(11):1597–1604.
  • Gojny FH, Wichmann MHG, Köpke U, et al. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol. 2004;64(15):2363–2371.
  • Yu N, Zhang Z, He S. Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater Sci Eng A. 2008;494(1-2):380–384.
  • Kim J, Yim BS, Kim JM, et al. The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron Reliab. 2012;52(3):595–602.
  • Khan U, May P, Porwal H, et al. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl Mater Interfaces. 2013;5(4):1423–1428.
  • Novoselov KS, Fal V, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192–200.
  • Chong HM, Hinder SJ, Taylor AC. Graphene nanoplatelet-modified epoxy: effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms. J Mater Sci. 2016;51(19):8764–8790.
  • Sumita M, Shizuma T, Miyasaka K, et al. Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci Phys B. 1983;22(4):601–6018.
  • Halpin JC, Kardos JL. The Halpin–Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–352.
  • Soltannia B, Taheri F. Influence of nano-reinforcement on the mechanical behavior of adhesively bonded single-lap joints subjected to static, quasi-static, and impact loading. J Adhes Sci Technol. 2015;29(5):424–442.
  • Shang J, Chen Y, Zhou Y, et al. Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites. Polymer. 2015;68:131–139.
  • Bortz DR, Heras EG, Martin-Gullon I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules. 2012;45(1):238–245.
  • H, Kim CW. Macosko Processing-property relationships of polycarbonate/graphene composites. Polymer. 2009;50(15):3797–3809.
  • Scarselli G, Corcione C, Nicassio F, et al. Adhesive joints with improved mechanical properties for aerospace applications. Int J Adhes Adhes. 2017;75:174–180.
  • Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, et al. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des. 2015;66:142–149.
  • Guadagno L, Sarno M, Vietri U, et al. Graphene-based structural adhesive to enhance adhesion performance. RSC Adv. 2015;5(35):27874–27886.
  • Vertuccio L, Foglia F, Pantani R, et al. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications. Compos B Eng. 2021;207:108583.
  • Romanov V, Lomov SV, Verpoest I, et al. Interfiber stresses in composites with carbon nanotube grafted and coated fibers. Compos Sci Technol. 2015;114:79–86.
  • Olifirov LK, Kaloshkin SD, Zhang D. Study of thermal conductivity and stress-strain compression behavior of epoxy composites highly filled with Al and Al/f-MWCNT obtained by high-energy ball milling. Compos A. Appl Sci Manuf. 2017;101:344–352.
  • Wang K, Chen L, Wu J, et al. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules. (3)2005;38:788–800.
  • Su GM, Best K, Ranganathan T, et al. Nanoparticles for enhancing polymer adhesion. Macromol. (13)2011;44:5256–5261.
  • Morimune-Moriya S, Goto T, Nishino T. Effect of aspect ratio of graphene oxide on properties of poly (vinyl alcohol) nanocomposites. Nanocomposites. 2019;5(3):84–93.
  • Gao Y, Picot OT, Bilotti E, et al. Influence of filler size on the properties of poly (lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J. 2017;86:117–131.
  • Kalaitzidou K, Fukushima H, Drzal LT. Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Compos A. Appl Sci Manuf. 2007;38(7):1675–1682.
  • Wang F, Drzal LT, Qin Y, et al. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci. 2015;50(3):1082–1093.
  • Gültekin K, Akpinar S, Gürses A, et al. The effects of graphene nanostructure reinforcement on the adhesive method and the graphene reinforcement ratio on the failure load in adhesively bonded joints. Compos B. Eng. 2016;98:362–369.
  • Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater. 1969;3(4):732–734.
  • Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–574.
  • Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys. 1952;3(3):72–79.
  • Gao XL, Li K. A shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct. 2005;42(5–6):1649–1667.
  • Marami G, S, Adib Nazari, S, Ali Faghidian, et al. Improving the mechanical behavior of the adhesively bonded joints using RGO additive. Int J Adhes Adhes. 2016;70:277–286.
  • Boutar Y, Naïmi S, Mezlini S, et al. Effect of adhesive thickness and surface roughness on the shear strength of aluminium one-component polyurethane adhesive single-lap joints for automotive applications. J Adhes Sci Technol. 2016;30(17):1913–1929.
  • Barra G, Vertuccio L, Vietri U, et al. Toughening of epoxy adhesives by combined interaction of carbon nanotubes and silsesquioxanes. Materials. 2017;10(10):1131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.