772
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

A review of nanoparticle reinforced surface composites processed by friction stir processing

, ORCID Icon &
Pages 565-601 | Received 12 Oct 2021, Accepted 29 Jan 2022, Published online: 15 Feb 2022

References

  • Park S-J, Seo M-K. Chapter 8. Composite characterization. In: Interface science and technology. New York: Academic Press; 2011. p. 631–738.
  • Mathis RA. Composite materials. In: Knight M, Curliss D, editors. Encyclopedia of physical science and technology. 3rd ed. New York: Academic Press; 2003. p. 455–468.
  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341(1–2):307–310.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134.
  • Bakshi D, Prakash C, Singh S, et al. A detailed study on friction stir welding and friction stir processing–a review paper. Int J Ind Eng Technol. 2014;4(1):1–22.
  • Gupta MK. Friction stir process: a green fabrication technique for surface composites-a review paper. SN Appl Sci. 2020;2(4):534.
  • Li K, Liu X, Zhao Y. Research status and prospect of friction stir processing technology. Coatings. 2019;9(2):129.
  • Kumar RA, Kumar RA, Ahamed KA, et al. Review of friction stir processing of aluminium alloys. Mater Today Proc. 2019;16:1048–1054.
  • García-Vázquez F, Vargas-Arista B, Muñiz R, et al. The role of friction stir processing (FSP) parameters on TiC reinforced surface Al7075-T651 aluminum alloy. Soldag Insp. 2016;21(4):508–516.
  • Raja S, Muhamad MR, Jamaludin MF, et al. A review on nanomaterials reinforcement in friction stir welding. J Mater Res Technol. 2020;9(6):16459–16487.
  • Tarasov SY. Friction stir processing on carbon steel. Int Conf Phys Mesomech Multilevel Syst. 2014;1:627–630.
  • Chen YC, Fujii H, Tsumura T, et al. Friction stir processing of 316L stainless steel plate. Sci Technol Weld Join. 2009;14(3):197–201.
  • Ding Z, Fan Q, Wang L. A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties. Metall Materi Trans B. 2019;50(5):2134–2162.
  • Su J-Q, Nelson TW, McNelley TR, et al. Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A. 2011;528(16–17):5458–5464.
  • Sato YS, Park SHC, Matsunaga A, et al. Novel production for highly formable Mg alloy plate. J Mater Sci. 2005;40(3):637–642.
  • Sato YS, Sasaki A, Sugimoto A, et al. Enhancement of formability in magnesium alloy AZ31B via friction stir processing. MSF. 2007;539–543:3775–3780.
  • Ma Z, Sharma SR, Mishra R, et al. Microstructural modification of cast aluminum alloys via friction stir processing. Mater Sci Forum. 2003;426–432:2891–2896.
  • Nascimento F, Santos T, Vilaça P, et al. Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys. Mater Sci Eng A. 2009;506(1–2):16–22.
  • Butola R, Tyagi L, Singari RM, et al. Mechanical and wear performance of Al/SiC surface composite prepared through friction stir processing. Mater Res Express. 2021;8(1):016520.
  • Ma Z. Friction stir processing technology: a review. Metall and Mat Trans A. 2008;39(3):642–658.
  • Argade GR, Kandasamy K, Panigrahi SK, et al. Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corros Sci. 2012;58:321–326.
  • Liu F, Ji Y, Sun Z, et al. Enhancing corrosion resistance and mechanical properties of AZ31 magnesium alloy by friction stir processing with the same speed ratio. J Alloys Compd. 2020;829(Complete):154452.
  • Seifiyan H, Heydarzadeh Sohi M, Ansari M, et al. Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J Magnesium Alloys. 2019;7(4):605–616.
  • Khan I, Hussain G, A Al-Ghamdi K, et al. Investigation of impact strength and hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated by friction stir processing. Polymers. 2019;11(6):1041.
  • Tyagi L, Butola R, Jha AK. Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via friction stir processing. Mater Res Express. 2020;7(6):066526.
  • Papantoniou IG, Kyriakopoulou HP, Pantelis DI, et al. Manufacturing process of AA5083/nano-γAl2O3 localized composite metal foam fabricated by friction stir processing route (FSP) and microstructural characterization. J Mater Sci. 2018;53(5):3817–3835.
  • Maamoun AH, Veldhuis SC, Elbestawi M. Friction stir processing of AlSi10Mg parts produced by selective laser melting. J Mater Process Technol. 2019;263:308–320.
  • Moradi MM, Jamshidi Aval H, Jamaati R. Microstructure and mechanical properties in nano and microscale SiC-included dissimilar friction stir welding of AA6061-AA2024. Mater Sci Technol. 2018;34(4):388–401.
  • Nosko M, Štepánek M, Zifčák P, et al. Solid-state joining of powder metallurgy Al-Al2O3 nanocomposites via friction-stir welding: effects of powder particle size on the weldability, microstructure, and mechanical property. Mater Sci Eng A. 2019;754:190–204.
  • Tebyani SF, Dehghani K. Friction stir spot welding of interstitial free steel with incorporating silicon carbide nanopowders. Int J Adv Manuf Technol. 2015;79(1–4):343–350.
  • Karakizis PN, Pantelis DI, Fourlaris G, et al. The role of SiC and TiC nanoparticle reinforcement on AA5083-H111 friction stir welds studied by electron microscopy and mechanical testing. Int J Adv Manuf Technol. 2018;94(9–12):4159–4176.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78.
  • Liu FC, Hovanski Y, Miles MP, et al. A review of friction stir welding of steels: tool, material flow, microstructure, and properties. J Mater Sci Technol. 2018;34(1):39–57.
  • Padhy GK, Wu CS, Gao S. Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: a review. J Mater Sci Technol. 2018;34(1):1–38.
  • Salih OS, Ou H, Sun W, et al. A review of friction stir welding of aluminium matrix composites. Mater Des. 2015;86:61–71.
  • Çam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J Materi Eng Perform. 2014;23(6):1936–1953.
  • Sunil BR, Reddy GP, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Magnesium Alloys. 2016;4(1):52–61.
  • Ratna Sunil B, Sampath Kumar TS, Chakkingal U, et al. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. J Mater Sci Mater Med. 2014;25(4):975–988.
  • Vilar R, Almedia A. 2007. Laser surface treatment for wear resistance. IBERTRIB 2007 - IV Congresso Ibérico de Tribologia.
  • Mahmood MA, Popescu AC, Mihailescu IN. Metal matrix composites synthesized by Laser-Melting deposition: a review. Materials. 2020;13(11):2593.
  • Pantelis D, Tissandier A, Manolatos P, et al. Formation of wear resistant Al–SiC surface composite by laser melt–particle injection process. Mater Sci Technol. 1995;11(3):299–303.
  • Das M, Balla VK, Basu D, et al. Laser processing of in situ synthesized TiB–TiN-reinforced Ti6Al4V alloy coatings. Scr Mater. 2012;66(8):578–581.
  • Wang Y, Zhang X, Zeng G, et al. In situ production of Fe–VC and Fe–TiC surface composites by cast sintering. Compos A Appl Sci Manuf. 2001;32(2):281–286.
  • Wang Y, Sun Z, Ding Y, et al. In situ production of VC-SiO -Fe surface composite by cast-sintering. Mater Des. 2004;25(1):69–72.
  • Gui M, Kang SB. SiC bi-layer composites produced by plasma-spraying process. Mater Lett. 2000;46(5):296–302.
  • Zhang B, Zhu L, Liao H, et al. Improvement of surface properties of SLM parts by atmospheric plasma spraying coating. Appl Surf Sci. 2012;263:777–782.
  • Li C, Yan S, Zhang F, et al. Fabrication and characterization of micro-laminated TiC Ti5Si3Ti3SiC2 composite coatings by atmosphere plasma spraying. Vacuum. 2019;161:14–20.
  • Lee J, Euh K, Oh JC, et al. Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation. Mater Sci Eng A. 2002;323(1–2):251–259.
  • Oh JC, Yun E, Golkovski MG, et al. Improvement of hardness and wear resistance in SiC/Ti–6Al–4V surface composites fabricated by high-energy electron beam irradiation. Mater Sci Eng A. 2003;351(1–2):98–108.
  • Selvan JS, Subramanian K, Nath A, et al. Laser boronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN. Mater Sci Eng A. 1999;260(1–2):178–187.
  • Das M, Balla VK, Basu D, et al. Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater. 2010;63(4):438–441.
  • Das K, Bandyopadhyay TK, Das S. A review on the various synthesis routes of TiC reinforced ferrous based composites. J Mater Sci. 2002;37(18):3881–3892.
  • Ghasali E, Nouranian H, Rahbari A, et al. Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering. Mat Res. 2016;19(5):1189–1192.
  • Hu M, Tang J-C, Chen X-G, et al. Microstructure and properties of WC-12Co composite coatings prepared by laser cladding. Trans Nonferr Met Soc China. 2020;30(4):1017–1030.
  • Ibrahim I, Mohamed F, Lavernia E. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137–1156.
  • Liu Y, Lim S, Lu L, et al. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. J Mater Sci. 1994;29(8):1999–2007.
  • Butola R, Pandit D, Pratap C, et al. Two decades of friction stir processing–a review of advancements in composite fabrication. J Adhes Sci Technol. 2021;35:1–38.
  • Ahangaran F, Navarchian AH. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review. Adv Colloid Interface Sci. 2020;286:102298
  • Ju X, Zhang F, Chen Z, et al. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment. Metals. 2017;7(12):530.
  • Srivastava M, Rathee S, Siddiquee AN, et al. Investigation on the effects of silicon carbide and cooling medium during Multi-Pass FSP of Al-Mg/SiC surface composites. Silicon. 2019;11(4):2149–2157.
  • Asadi P, Besharati Givi MK, Faraji G. Producing ultrafine-grained AZ91 from as-cast AZ91 by FSP. Mater Manuf Processes. 2010;25(11):1219–1226.
  • Yu X, Wu H, Guo L, et al. Investigating on microstructural and mechanical properties of Al6061/nano-SiC composites fabricated via friction stir processing. Mater Res Express. 2020;7(2):026554.
  • Asadi P, Givi MK, Abrinia K, et al. Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. J Mater Eng Perform. 2011;20(9):1554–1562.
  • Huang G, Cheng D, Wang H, et al. Effect of tool probe with a disc at the top on the microstructure and mechanical properties of FSW joints for 6061-T6 aluminum alloy. J Adhes Sci Technol. 2019;33(22):2462–2475.
  • Kumar A, Pal K, Mula S. Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro- and nanocomposites by friction stir processing. J Manuf Processes. 2017;30:1–13.
  • Patel SK, Singh VP, Roy BS, et al. Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: a review. Mater Sci Eng B. 2020;262:114708.
  • Heidarzadeh A, Pouraliakbar H, Mahdavi S, et al. Ceramic nanoparticles addition in pure copper plate: FSP approach, microstructure evolution and texture study using EBSD. Ceram Int. 2018;44(3):3128–3133.
  • Guo JF, Liu J, Maleksaeedi S, et al. Effects of nano-Al2O3 particle addition on grain structure evolution. Mater Sci Eng A. 2014;602:143–149.
  • Dinaharan I, Sathiskumar R, Murugan N. Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing. J Mater Res Technol. 2016;5(4):302–316.
  • Yuvaraj N, Aravindan S. Vipin. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J Mater Res Technol. 2015;4(4):398–410.
  • Sahraeinejad S, Izadi H, Haghshenas M, et al. Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater Sci Eng A. 2015;626:505–513.
  • Butola R, Murtaza Q, Singari RM. Formation of self-assembled monolayer and characterization of AA7075-T6/B4C nano-ceramic surface composite using friction stir processing. Surf Topogr: Metrol Prop. 2020;8(2):025030.
  • Mordyuk B, Silberschmidt V, Prokopenko G, et al. Ti particle-reinforced surface layers in Al: effect of particle size on microstructure, hardness and wear. Mater Charact. 2010;61(11):1126–1134.
  • Ma Y, Ji G, Chen Z, et al. On the study of a TiB2 nanoparticle reinforced 7075Al composite with high tensile strength and unprecedented ductility. MSF. 2018;941:1933–1938.
  • Ahmed MMZ, Refat M. El-Mehallwai  . Manufacturing of nano-surface AA7075 composites by friction stir processing. Light Met. 2014;10:1417–1422.
  • Ostovan F, Hasanzadeh E, Toozandehjani M, et al. A combined friction stir processing and ball milling route for fabrication Al5083-Al2O3 nanocomposite. Mater Res Express. 2019;6(6):065012.
  • Moustafa EB, AbuShanab WS, Ghandourah E, et al. Microstructural, mechanical and thermal properties evaluation of AA6061/Al2O3-BN hybrid and Mono nanocomposite surface. J Mater Res Technol. 2020;9(6):15486–15495.
  • Faraji G, Asadi P. Characterization of AZ91/alumina nanocomposite produced by FSP. Mater Sci Eng A. 2011;528(6):2431–2440.
  • Sharifitabar M, Kashefi M, Khorshahian S. Effect of friction stir processing pass sequence on properties of Mg–ZrSiO4–Al2O3 surface hybrid micro/nano-composites. Mater Des. 2016;108:1–7.
  • Molla Ramezani N, Davoodi B, Farahani M, et al. Surface integrity of metal matrix nanocomposite produced by friction stir processing (FSP). J Braz Soc Mech Sci Eng. 2019;41(11):503.
  • Butola R, Singari RM, Murtaza Q. Mechanical and wear behaviour of friction stir processed surface composite through Self-Assembled monolayer technique. Surf Topogr Metrol. Prop. 2020;8(4):45007.
  • Moustafa EB, Melaibari A, Basha M. Wear and microhardness behaviors of AA7075/SiC-BN hybrid nanocomposite surfaces fabricated by friction stir processing. Ceram Int. 2020;46(10):16938–16943.
  • Parumandla N, Adepu K. Effect of Al2O3 and SiC nano reinforcements on microstructure, mechanical and wear properties of surface nanocomposites fabricated by friction stir processing. ms. 2018;24(3):338–344.
  • Shamsipur A, Kashani-Bozorg SF, Zarei-Hanzaki A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf Coat Technol. 2011;206(6):1372–1381.
  • Ghanbari D, Kasiri Asgarani M, Amini K, et al. Influence of heat treatment on mechanical properties and microstructure of the Al2024/SiC composite produced by multi–pass friction stir processing. Measurement. 2017;104:151–158.
  • Kishan V, Devaraju A, Lakshmi KP. Tribological properties of nano TiB2 particle reinforced 6061-T6 aluminum alloy surface composites via friction stir processing. Mater Today Proc. 2018;5(1):1615–1619.
  • Kishan V, Devaraju A. Preparation of nano surface layer composite (TiB2)p on 6061-T6. Mater Today Proc. 2017;4(2):4065–4069.
  • Sahoo B, Joseph J, Sharma A, et al. Particle size and shape effects on the surface mechanical properties of aluminium coated with carbonaceous materials. J Compos Mater. 2019;53(2):261–270.
  • Ostovan F, Amanollah S, Toozandehjani M, et al. Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. J Compos Mater. 2020;54(8):1107–1117.
  • Prabhakar G, Pavan Kumar Y, Dileep Kumar P, et al. Producing Al5083-CNT composites by friction stir processing: influence of grain refinement and CNT on mechanical and corrosion properties. Mater Today: Proc. 2019;15:44–49.
  • Du Z, Tan MJ, Guo JF, et al. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). Mater Sci Eng A. 2016;667:125–131.
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442(7100):282–286.
  • Feng S, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater. 2017;125:98–108.
  • Kumar PA, Madhu HC, Pariyar A, et al. Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Mater Sci Eng A. 2020;769:138517.
  • Khodabakhshi F, Nosko M, Gerlich A. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surf Coat Technol. 2018;335:288–305.
  • Khodabakhshi F, Nosko M, Gerlich AP. Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater Sci Technol. 2018;34(14):1773–1791.
  • Sharma A, Narsimhachary D, Sharma VM, et al. Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surf Coat Technol. 2019;368:175–191.
  • EL-Eraki BR, EL-Sissi AR, Khafagi SM, et al. Process parameters optimization for producing AA6061/(Al2O3, Gr and Al2O3 +Gr) surface composites by friction stir processing. IOP Conf Ser Mater Sci Eng. 2019;610(1):012006.
  • Patil NA, Pedapati SR, Mamat O, et al. Morphological characterization, statistical modeling and wear behavior of AA7075-titanium carbide-graphite surface composites via friction stir processing. JMR&T. 2021;11:2160–2180.
  • Arulmoni VJ, Ranganath MS, Mishar RS. Effect of single and multiple-pass friction stir processing on microstructure, hardness and tensile properties of a 99.99% Cu with carbon nano tubes. Int J Adv Res Innov. 2015;3(1):189–196.
  • Kim J-Y, Hwang J-W, Kim H-Y, et al. Fabrication of AZ31/CNT surface nano-composite by double-pass friction stir processing. Arch Metall Mater. 2017;62(2):1039–1042.
  • Liu Z, Xiao B, Wang W, et al. Elevated temperature tensile properties and thermal expansion of CNT/2009Al composites. Compos Sci Technol. 2012;72(15):1826–1833.
  • Tekiyeh RM, Najafi M, Shahraki S. Machinability of AA7075-T6/carbon nanotube surface composite fabricated by friction stir processing. J Process Mech Eng. 2019;233(4):839–848.
  • Sharma A, Fujii H, Paul J. Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP. J Manuf Processes. 2020;59:604–620.
  • Khan M, Ud Din R, Wadood A, et al. Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions. J Alloys Compd. 2019;790:1076–1091.
  • Arab M, Marashi SP. Graphene nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol Lett. 2018;66(4):156.
  • Zang Q, Chen H, Zhang J, et al. Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. J Mater Res Technol. 2021;14:195–201.
  • Zhang Z, Liu Z, Xiao B, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 2018;135:215–223.
  • Sharma A, Sharma VM, Paul J. Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying. J Compos Mater. 2020;54(1):45–60.
  • Vahedi F, Zarei-Hanzaki A, Salandari-Rabori A, et al. Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles. J Alloys Compd. 2020;815:152231.
  • Singh S, Singh G, Kumar L, et al. Microstructural analysis and tribological behavior of aluminum alloy reinforced with hybrid alumina/nanographite particles. Proc Inst Mech Eng J J Eng Tribol. 2015;229(5):597–608.
  • Rezaeian-Delouei M, Abdollah-Pour H, Tajally M, et al. An investigation of microstructure, wear and corrosion resistance of AZ31B–SiO2–graphite hybrid surface composite produced by friction stir processing. Mater Res Express. 2020;6(12):1250a7.
  • Sunil BR. Different strategies of secondary phase incorporation into metallic sheets by friction stir processing in developing surface composites. Int J Mech Mater Eng. 2016;11(1):12.
  • Anvari S, Karimzadeh F, Enayati M. A novel route for development of Al–Cr–O surface nano-composite by friction stir processing. J Alloys Compd. 2013;562:48–55.
  • Azizieh M, Kokabi A, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041.
  • Kumar AP, Raj R, Kailas SV. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater Des. 2015;85:626–634.
  • Farnoush H, Abdi Bastami A, Sadeghi A, et al. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution. J Mech Behav Biomed Mater. 2013;20:90–97.
  • Jalilvand MM, Mazaheri Y, Heidarpour A, et al. Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing. Surf Coat Technol. 2019;360:121–132.
  • Mazaheri Y, Karimzadeh F, Enayati MH. Tribological behavior of A356/Al2O3Surface nanocomposite prepared by friction stir processing. Metall and Mat Trans A. 2014;45(4):2250–2259.
  • Lee C, Huang J, Hsieh P. Mg based nano-composites fabricated by friction stir processing. Scr Mater. 2006;54(7):1415–1420.
  • Zohoor M, Givi MB, Salami P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater Des. 2012;39:358–365.
  • Heidarzadeh A, Jabbari M, Esmaily M. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol. 2015;77(9–12):1819–1829.
  • Frigaard Ø, Grong Ø, Midling OT. A process model for friction stir welding of age hardening aluminum alloys. Metall and Mat Trans A. 2001;32(5):1189–1200.
  • Arbegast WH. 1998. Friction stir weld technology development at lockheed martin michoud sace system-an overview. Proceedings of the Fifth International Conference on Trends in Welding Research, p. 541–546.
  • Chen CM, Kovacevic R. Finite element modeling of friction stir welding-thermal and thermochemical analysis. Int J Mach Tool Manuf. 2003;43(13):1319–1326.
  • Raheja GS, Singh S, Prakash C. Processing and characterization of Al5086-Gr-SiC hybrid surface composite using friction stir technique. Mater Today Proc. 2020;28(4):1350–1354.
  • Butola R, Prakash C, Bector K, et al. Fabrication and multi-objective optimization of friction stir processed aluminium based surface composites using taguchi approach. Surf Topogr Metrol Prop. 2021;9(2):025044.
  • Adetunla A, Akinlabi E. Mechanical characterization of Al/Ti-6Al-4V surface composite fabricated via FSP: a comparison of tool geometry and number of passes. Mater Res Express. 2018;5(11):115015.
  • Heidarzadeh A, Taghizadeh B, Mohammadzadeh A. In-situ formation of Zn oxide particles in CuZn matrix during friction stir processing. J Adhes Sci Technol. 2021;35(9):1006–1013.
  • Prasad SR, Kumar A, Reddy CHR. Effect of rotational speed on microstructure and microhardness of boron carbide reinforced AA2014-T6 nano surface composites. IJMPERD. 2018;8(3):267–274.
  • Khayyamin D, Mostafapour A, Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater Sci Eng A. 2013;559:217–221.
  • Vigneshkumar M, Padmanaban G, Balasubramanian V. Influence of tool tilt angle on the formation of friction stir processing zone in cast magnesium alloy ZK60/SiCp surface composites. Metallogr Microstruct Anal. 2019;8(1):58–66.
  • Asadi P, Faraji G, Besharati MK. Producing of AZ91/SiC composite by friction stir processing (FSP). Int J Adv Manuf Technol. 2010;51(1–4):247–260.
  • Paidar M, Ojo OO, Heidarzadeh A, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159–169.
  • Tonelli L, Morri A, Toschi S, et al. Effect of FSP parameters and tool geometry on microstructure, hardness, and wear properties of AA7075 with and without reinforcing B4C ceramic particles. Int J Adv Manuf Technol. 2019;102(9–12):3945–3961.
  • Hashemi R, Hussain G. Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: a comparison of tool geometries and number of passes. Wear. 2015;324-325:45–54.
  • Eftekharinia H, Amadeh AA, Khodabandeh A, et al. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Met. 2020;39(4):429–435.
  • Bector K, Singh M, Pandey D, et al. Study of residual stresses in multi-pass friction stir processed surface composites. Adv Mater Proc Technol. 2021:1–15.
  • Mishra RS, Mehdi H. Microstructure and mechanical characterization of tungsten inert gas-welded joint of AA6061 and AA7075 by friction stir processing. Proc Inst Mech Eng L J Mater Des Appl. 2021;235(11):2531–2546.
  • Mishra RS, Mehdi H. Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-Welded joint of AA6061 and AA7075. Trans Indian Inst Met. 2020;73(7):1773–1788.
  • Mehdi H, Mishra R. Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Defence Technol. 2021;17(3):715–727.
  • Węglowski MS, Sedek P, Hamilton C. Experimental and numerical analysis of residual stress in cast aluminum alloy after FSP process. KEM. 2015;651–653:1563–1568.
  • Hashemi R. 2014. Experimental investigations on the mechanical properties and microstructure of Al7075-TiN nano-composite formed by friction stir processing. Gazimağusa, North Cyprus. http://hdl.handle.net/11129/3715.
  • Al-Ghamdi KA, Hussain G, Hashemi R. Fabrication of metal-matrix AL7075T651/TiN nanocomposite employing friction stir process. J Eng Manuf. 2017;231(8):1319–1331.
  • Khojastehnezhad VM, Pourasl HH, Vatankhah Barenji R. Effect of tool pin profile on the microstructure and mechanical properties of friction stir processed Al6061/Al2O3—TiB2 surface hybrid composite layer. Proc Inst Mech Eng L J Mater Des Appl. 2019;233(5):900–912.
  • Baruch JL, Raju R, Balasubramanian V. Effect of tool pin profile on microstructure and hardness of friction stir processed aluminum die casting alloy. Eur J Sci Res. 2012;70(3):373–385.
  • Singla S, Kang AS, Sidhu T. Development and characterization of WE43/nano-TiC surface composite by friction stir processing technique. Meas Control. 2020;53(3–4):730–741.
  • Hussain G, Hashemi R, Hashemi H, et al. An experimental study on multi-pass friction stir processing of Al/TiN composite: some microstructural, mechanical, and wear characteristics. Int J Adv Manuf Technol. 2016;84(1–4):533–546.
  • Bahrami M, Besharati Givi MK, Dehghani K, et al. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Des. 2014;53:519–527.
  • Parumandla N, Adepu K. Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nanocomposite by friction stir processing. Part Sci Technol. 2020;38(1):121–130.
  • Mahesh VP, Arora A. Effect of tool shoulder diameter on the surface hardness of aluminum-molybdenum surface composites developed by single and double groove friction stir processing. Metall and Mat Trans A. 2019;50(11):5373–5311.
  • Farias A, Batalha G, Prados E, et al. Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V. Wear. 2013;302(1–2):1327–1333.
  • Molla Ramezani N, Davoodi B, Aberoumand M, et al. Assessment of tool wear and mechanical properties of Al 7075 nanocomposite in friction stir processing (FSP). J Braz Soc Mech Sci Eng. 2019;41(4):182.
  • Butola R, Choudhary N, Kumar R, et al. Measurement of residual stress on H13 tool steel during machining for fabrication of FSW/FSP tool pins. Mater Today: Proc. 2021;43:256–262.
  • Wu L, Wang D, Xiao B, et al. Tool wear and its effect on microstructure and properties of friction stir processed Ti–6Al–4V. Mater Chem Phys. 2014;146(3):512–522.
  • Razmpoosh M, Zarei-Hanzaki A, Imandoust A. Effect of the Zener–Hollomon parameter on the microstructure evolution of dual phase TWIP steel subjected to friction stir processing. Mater Sci Eng A. 2015;638:15–19.
  • Thompson B, Doherty K, Su J, et al. Nano-sized grain refinement using friction stir processing. Fric Stir Weld Process. 2013;7:9–19.
  • Mehrian SM, Rahsepar M, Khodabakhshi F, et al. Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy. Surf Coat Technol. 2021;405:126647.
  • Su J-Q, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405(1–2):277–286.
  • Wang J, Lu Y, Zhou D, et al. Effects of cooling condition on microstructural evolution and mechanical properties of friction stir processed 2A14 aluminum alloy. Mater Res Express. 2019;6(12):126577.
  • Chabok A, Dehghani K. Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. J Materi Eng Perform. 2013;22(5):1324–1330.
  • Izadi H, Sandstrom R, Gerlich AP. Grain growth behavior and Hall–Petch strengthening in friction stir processed Al 5059. Metall and Mat Trans A. 2014;45(12):5635–5644.
  • Kandasamy S, Rathinasamy P, Nagarajan N, et al. Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by Taguchi optimization approach. J Adhes Sci Technol. 2021:1–22.
  • Cho J-H, Boyce DE, Dawson PR. Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mater Sci Eng A. 2005;398(1–2):146–163.
  • Simar A, Br’Echet Y, De Meester B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A–T6. Acta Mater. 2007;55(18):6133–6143.
  • Faraji G, Dastani O, Mousavi SA. Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. J Materi Eng Perform. 2011;20(9):1583–1590.
  • Dolatkhah A, Golbabaei P, Givi MB, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458–464.
  • Butola R, S RM, Murtaza Q. Fabrication and optimization of AA7075 matrix surface composites using Taguchi technique via friction stir processing (FSP). Eng Res Express. 2019;1(2):025015.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Investigating the effects of SiC particle sizes on microstructural and mechanical properties of AA5059/SiC surface composites during Multi-Pass FSP. Silicon. 2019;11(2):797–805.
  • Guo R, Shen Y, Huang G, et al. Microstructures and mechanical properties of thin 304 stainless steel sheets by friction stir welding. J Adhes Sci Technol. 2018;32(12):1313–1323.
  • Tyagi L, Butola R, Kem L, et al. Comparative analysis of response surface methodology and artifcial neural network on the wear properties of surface composite fabricated by friction stir processing. J Bio Tribo Corros. 2021;7(2):36.
  • Butola R, Singari RM, Murtaza Q, et al. Comparison of response surface methodology with artificial neural network for prediction of the tensile properties of friction stir-processed surface composites. Proc Inst Mech Eng E J Process Mech Eng. 2021:095440892110368.
  • Bector K, Butola R, Singari RM, et al. Prediction of hardness in friction stir processing by artificial neural networks. JER. 2021; Special Issue:170–180.
  • Asadi P, Besharati Givi MK, Rastgoo A, et al. Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. Int J Adv Manuf Technol. 2012;63(9–12):1095–1107.
  • Butola R, Kumar R, Choudhary N, et al. Optimisation of FSP process parameters of surface composites using GRA and Taguchi approach. JER. 2021; Special Issue:1–12.
  • Butola R, Murtaza Q, Singari RM. An experimental and simulation validation of residual stress measurement for manufacturing of friction stir processing tool. Indian J Eng Mater Sci. 2020;27(4):826–836.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.