116
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Generation of force and torque during joining of AZ91C plates by FSW under distinctive tool tilt angle and their impact on mechanical strength and micro-structure

ORCID Icon, , &
Pages 1071-1090 | Received 06 Nov 2021, Accepted 21 Mar 2022, Published online: 31 Mar 2022

References

  • Leśniak D, Wassermann A, Dziki M, et al. Susceptibility for extrusion welding of AlMg alloys. Arch Civ Mech Eng. 2019;19(1):20–31.
  • Sandnes L, Grong Ø, Torgersen J, et al. Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys. Int J Adv Manuf Technol. 2018;98(5–8):1059–1065.
  • Baqer YM, Ramesh S, Yusof F, et al. Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys. Int J Adv Manuf Technol. 2018;95(9–12):4353–4369.
  • Yin K, Cao L, Wang N. Mechanical properties and residual stresses of 5083 to AM60B dissimilar friction stir welding with different process parameters. J Adhes Sci Technol. 2019;33(23):2615–2629.
  • Ivanov SY, Panchenko OV, Mikhailov VG. Comparative analysis of non-uniformity of mechanical properties of welded joints of Al – Mg – Si alloys during friction stir welding and laser welding. Met Sci Heat Treat. 2018;60(5–6):393–398.
  • Singh UK, Dubey AK. Study of weld characteristics in friction stir welding of dissimilar Mg-Al-Zn magnesium alloys under varying welding conditions. J Materi Eng Perform. 2021;30(10):7690–7703.
  • Rajak DK, Pagar DD, Menezes PL, et al. Friction-based welding processes: friction welding and friction stir welding. J Adhes Sci Technol. 2020;34(24):2613–2637.
  • Annin BD, Fomin VM, Karpov EV, et al. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding. J Appl Mech Tech Phy. 2017;58(5):939–946.
  • Liu J, Niu S, Ren R, et al. Improving joint morphologies and tensile strength of Al/Mg dissimilar alloys friction stir lap welding by changing Zn interlayer thickness. Acta Metall Sin. 2019;32(11):1385–1395.
  • Islam MR, Ishak M, Shah LH, et al. Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. Int J Adv Manuf Technol. 2017;88(9–12):2773–2783.
  • Jiang X, Chen S. Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys. Weld World. 2018;62(6):1159–1171.
  • Satheesh C, Sevvel P, Kumar RS. Experimental identification of optimized process parameters for FSW of AZ91C Mg alloy using quadratic regression models. SV-JME. 2020;66(12):736–751.
  • Chai P, Hu W, Ji S, et al. Refill friction stir spot welding dissimilar Al/Mg alloys. J Materi Eng Perform. 2019;28(10):6174–6181.
  • Mofid MA, Abdollah-Zadeh A, Ghaini FM, et al. Submerged Friction-Stir Welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys. Metall and Mat Trans A. 2012;43(13):5106–5114.
  • Kondrat’ev SY, Morozova YN, Golubev YA, et al. Microstructure and mechanical properties of welds of Al – Mg – Si alloys after different modes of impulse friction stir welding. Met Sci Heat Treat. 2018;59(11–12):697–702.
  • Guo G, Shen Y, Wu K, et al. Effect of material position on microstructure and mechanical properties of friction stir welded dissimilar austenite–ferrite stainless steels joints. J Adhes Sci Technol. 2021;35(12):1320–1336.
  • Taendl J, Poletti C. Influence of Al3 (Sc,Zr) precipitates on deformability and friction stir welding behavior of Al-Mg-Sc-Zr alloys. Berg Huettenmaenn Monatsh. 2016;161(7):330–333.
  • Husain MM, Sarkar R, Pal TK, et al. Friction stir welding of steel: heat input, microstructure, and mechanical property co-relation. J of Materi Eng and Perform. 2015;24(9):3673–3683.
  • Swamy MM, Muthukumaran S, Kiran K. A study on friction stir multi spot welding techniques to join commercial pure aluminum and mild steel sheets. Trans Indian Inst Met. 2017;70(5):1221–1232.
  • Li C, Zhang D, Gao X, et al. Numerical simulation and experimental research on friction stir welding of 2024-T3 aeronautical aluminum alloy. J Adhes Sci Technol. 2021;35(20):2230–2248.
  • Babu SDD, Sevvel P, Kumar RS, et al. Development of thermo mechanical model for prediction of temperature diffusion in different FSW tool pin geometries during joining of AZ80A Mg alloys. J Inorg Organomet Polym. 2021;31(7):3196–3212.
  • Sunilkumar D, Mathew J, Muthukumaran S, et al. Friction stir welding of 2.25Cr–1Mo steel to AISI 316LN stainless steel. Trans Indian Inst Met. 2020;73(6):1689–1693.
  • Wang T, Shukla S, Nene SS, et al. Towards obtaining sound butt joint between metallurgically immiscible pure Cu and stainless steel through friction stir welding. Metall and Mat Trans A. 2018;49(7):2578–2582.
  • Yang M, Bao R-J, Liu X-Z, et al. Thermo-mechanical interaction between aluminum alloy and tools with different profiles during friction stir welding. Trans Nonferrous Metals Soc China. 2019;29(3):495–506.
  • Guo R, Shen Y, Huang G, et al. Microstructures and mechanical properties of thin 304 stainless steel sheets by friction stir welding. J Adhes Sci Technol. 2018;32(12):1313–1323.
  • Saravanan C, Saravanan K, Kumar GS, et al. Investigation and evaluation of mechanical behaviour of Al-TiC alloy. Mater Today: Proc. 2021;37:1203–1207.
  • Kumar PS, Chander MS. Effect of tool pin geometry on FSW dissimilar aluminum alloys – (AA5083 & AA6061). Mater Today: Proc. 2021;39(1):472–477.
  • Babu SDD, Sevvel P, Kumar RS. Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding of AZ80A Mg alloy plates. J Mech Sci Technol. 2020;34(10):4239–4250.
  • Zhang HJ, Wang M, Zhu Z, et al. Impact of shoulder concavity on non-tool-tilt friction stir welding of 5052 aluminum alloy. Int J Adv Manuf Technol. 2018;96(1–4):1497–1506.
  • Tiwari A, Singh P, Pankaj P, et al. Effect of tool offset and rotational speed in dissimilar friction stir welding of AISI 304 stainless steel and mild steel. J Materi Eng Perform. 2019;28(10):6365–6379.
  • Zhai M, Wu C, Su H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J Manuf Processes. 2020;59:98–112.
  • Singh B, Saxena KK, Singhal P, et al. Role of various tool pin profiles in friction stir welding of AA2024 alloys. J Materi Eng Perform. 2021;30(11):8606–8615.
  • Grätzel M, Regensburg A, Hasieber M, et al. Scaling effects during friction stir welding of aluminum alloys with reduced tool aspect ratios. Weld World. 2019;63(2):337–347.
  • Nath RK, Maji P, Barma JD. Development of a Self-Heated friction stir welding tool for welding of polypropylene sheets. J Braz Soc Mech Sci Eng. 2019;41(12):553.
  • Wang HF, Wang JL, Zuo DW, et al. Application of stir tool force measuring dynamometer for friction stir welding of aluminum alloys. Strength Mater. 2017;49(1):162–170.
  • Guo C, Shen Y, Hou W, et al. Effect of groove depth and plunge depth on microstructure and mechanical properties of friction stir butt welded AA6061-T6. J Adhes Sci Technol. 2018;32(24):2709–2726.
  • Memon S, Murillo-Marrodán A, Lankarani HM, et al. Analysis of friction stir welding tool offset on the bonding and properties of Al–Mg–Si alloy T-Joints. Materials. 2021;14(13):3604.
  • Ji S, Li Z, Zhou Z, et al. Effect of thread and rotating speed on material flow behavior and mechanical properties of friction stir lap welding joints. J Materi Eng Perform. 2017;26(10):5085–5096.
  • Shah LH, Fleury A, St-George L, et al. Evolution of process parameters in friction stir welding of AA6061 aluminum alloy by varying tool eccentricity. Int J Adv Manuf Technol. 2020;109(5–6):1601–1612.
  • Pankaj P, Tiwari A, Biswas P, et al. A three-dimensional heat transfer modelling and experimental study on friction stir welding of dissimilar steels. J Braz Soc Mech Sci Eng. 2020;42(9):467.
  • Giridharan K, Sevvel P, Senthilnathan K, et al. Experimental study on mechanical properties of friction stir welded dissimilar joints of aluminium alloys AA8011-AA6082. Int J Vehicle Structures Systems. 2019;11(2):135–139.
  • Huang G, Cheng D, Wang H, et al. Effect of tool probe with a disc at the top on the microstructure and mechanical properties of FSW joints for 6061-T6 aluminum alloy. J Adhes Sci Technol. 2019;33(22):2462–2475.
  • Buffa G, Ingarao G, Campanella D, et al. An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int J Adv Manuf Technol. 2019;100(9–12):3013–3024.
  • Memon S, Fydrych D, Fernandez AC, et al. Effects of FSW tool plunge depth on properties of an Al-Mg-Si alloy T-joint: thermomechanical modeling and experimental evaluation. Materials. 2021;14(16):4754.
  • Baghdadi AH, Sajuri Z, Selamat NFM, et al. Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys. Int J Miner Metall Mater. 2019;26(10):1285–1298.
  • Zhao YP, Chen LF, Zhu SJ, et al. Clarifying effect of welding conditions on microstructure and mechanical properties of friction stir spot-welded DH590 automotive high-strength steel plates. J Iron Steel Res Int. 2021;28(2):232–243.
  • Iqbal Z, Bazoune A, Al-Badour F, et al. Effect of tool rotational speed on friction stir welding of ASTM A516-70 steel using W–25%re alloy tool. Arab J Sci Eng. 2019;44(2):1233–1242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.