158
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced anticorrosion performance of epoxy primer coating on zinc in 3.5% NaCl by micro and nano particulates of biopolymers

&
Pages 1419-1439 | Received 24 Mar 2022, Accepted 13 May 2022, Published online: 27 May 2022

References

  • Song S, Chen Z. Initial corrosion of pure zinc under NaCl electrolyte droplet using a Zn-Pt-Pt three-electrode system. Int J Electrochem Sci. 2013;8:6851–6863.
  • Yadav AP, Katayama H, Noda K, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte. Electrochim Acta. 2007;52(9):3121–3129.
  • Cole IS, Muster TH, Furman SA, et al. Products formed during the interaction of seawater droplets with zinc surfaces: I. Results from 1- and 2.5-day exposures. J Electrochem Soc. 2008;155(5):C244–55.
  • Nam ND, Mathesh M, Le TV, et al. Corrosion behavior of Mg-5Al-xZn alloys in 3.5 wt.% NaCl solution. J Alloys Compd. 2014;616:662–668.
  • Chen YY, Chung SC, Shih HC. Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride. Corros Sci. 2006;48(11):3547–3564.
  • Lindström R, Svensson J-E, Johansson L-G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature. J Electrochem Soc. 2000;147(5):1751–1757.
  • Bajat JB, Miskovic-Stankovic VB, Bibic N, et al. The influence of zinc surface pretreatment on the adhesion of epoxy coating electrodeposited on hot-dip galvanized steel. Prog Org Coat. 2007;58(4):323–330.
  • Shkirskiy V, Krasnova A, Sanchez T, et al. Development of anodic and cathodic blisters at a model Zn/epoxy interface studied using local electrochemical impedance. Electrochem Commun. 2020;111:106633–106640.
  • Yang C, Zili L. Study on diffusion of NaOH solution in zinc-rich epoxy coating using EIS. IOP Conf Ser Mater Sci Eng. 2020;729:12051–12056.
  • Ramezanzadeh B, Attar MM, Farzam M. Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings. Surf Coat Technol. 2010;205(3):874–884.
  • Bierwagen G, Tallman D, Li J, et al. EIS studies of coated metals in accelerated exposure. Prog Org Coat. 2003;46(2):149–158.
  • Xavier JR. Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel on mild steel. J Adhes Sci Technol. 2020;34(2):115–134.
  • Zaferani SH, Zaarei D, Danaee I, et al. Journal of adhesion science and the effect of organosilane on corrosion resistance of epoxy coating containing cerium nitrate. J Adhes Sci Technol. 2014;28(2):151–160.
  • Kar S, Gupta D, Banthia AK. Effect of aluminum silicate on the impact and adhesive. J Adhes Sci Technol. 2002;16(14):1901–1914.
  • Ratna D. Modification of epoxy resins for improvement of adhesion: a critical review. J Adhes Sci Technol. 2003;17(12):1655–1668.
  • Ramezanzadeh B, Attar MM. Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel. Prog Org Coat. 2011;71(3):314–328.
  • Yang LH, Liu FC, Han EH. Effects of P/B on the properties of anticorrosive coatings with different particle size. Prog Org Coat. 2005;53(2):91–98.
  • Dhoke SK, Khanna AS. Electrochemical behavior of nano-iron oxide modified alkyd based waterborne coatings. Mater Chem Phys. 2009;117(2–3):550–556.
  • Ding Y, Liang J, Liu G, et al. Preparation and anticorrosive property of soluble aniline tetramer. Coatings. 2019;9(6):399–411.
  • Petrunin MA, Gladkikh NA, Maleeva MA, et al. Improving the anticorrosion characteristics of polymer coatings in the case of their modification with compositions based on organosilanes. Prot Met Phys Chem Surf. 2021;57(2):374–388.
  • Nawaz M, Naeem N, Kahraman R, et al. Effectiveness of epoxy coating modified with yttrium oxide loaded with imidazole on the corrosion protection of steel. Nanomaterials. 2021;11(9):2291–2216.
  • Zhou X, Huang H, Zhu R, et al. Progress in organic coatings green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings. Prog Org Coat. 2020;143:105601–105612.
  • Zhou X, Huang H, Zhu R, et al. Facile modification of graphene oxide with lysine for improving anti-corrosion performances of water-borne epoxy coatings. Prog Org Coat. 2019;136:105200–105211.
  • Zhou S, Wu Y, Zhao W, et al. Comparative corrosion resistance of graphene sheets with different structures in waterborne epoxy coatings. Colloids Surf A Physicochem Eng Asp. 2018;556:273–283.
  • Cui M, Ren S, Zhao H, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem Eng J. 2018;335:255–266.
  • Wang S, Hu Z, Shi J, et al. Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings. Appl Surf Sci. 2019;484:759–770.
  • Cui M, Dong J, Zhou K, et al. Corrosion protection of water-borne epoxy coatings incorporated with graphene. Int J Electrochem Sci. 2018;13:12010–12023.
  • Bagherzadeh MR, Ghasemi M, Mahdavi F, et al. Progress in organic coatings investigation on anticorrosion performance of nano and micro polyaniline in new water-based epoxy coating. Prog Org Coat. 2011;72(3):348–352.
  • Bagherzadeh MR, Mahdavi F, Ghasemi M, et al. Progress in organic coatings using nanoemeraldine salt-polyaniline for preparation of a new anticorrosive water-based epoxy coating. Prog Org Coat. 2010;68(4):319–322.
  • Qiu S, Chen C, Cui M, et al. Applied surface science corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber. Appl Surf Sci. 2017;407:213–222.
  • Yang M, Wu J, Fang D, et al. Corrosion protection of waterborne epoxy coatings containing mussel-inspired adhesive polymers based on polyaspartamide derivatives on carbon steel. J Mater Sci Technol. 2018;34(12):2464–2471.
  • Wang N, Fu W, Zhang J, et al. Progress in organic coatings corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog Org Coat. 2015;89:114–122.
  • Ai L, Liu Y, Zhang XY, et al. A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings. Synth Met. 2014;191:41–46.
  • Wang N, Wu YH, Cheng KQ, et al. Investigation on anticorrosion performance of polyaniline‐mesoporous MCM‐41 composites in new water‐based epoxy coating. Mater Corros. 2014;65(10):968–976.
  • Liu X, Hou P, Zhao X, et al. The polyaniline-modified TiO2 composites in water-based epoxy coating for corrosion protection of Q235 steel. J Coat Technol Res. 2019;16(1):71–80.
  • Shi X, Nguyen TA, Suo Z, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol. 2009;204(3):237–245.
  • Liu H, Dong Zhang H, Pang J, et al. Superhydrophobic property of epoxy resin coating modified with octadecylamine and SiO2 nanoparticles. Mater Lett. 2019;247:204–207.
  • Pais M, Rao P. Maltodextrin for corrosion mitigation of zinc in sulfamic acid: electrochemical, surface and spectroscopic studies. Int J Biol Macromol. 2020;145:575–585.
  • Pais M, Rao P. Electrochemical, spectroscopic and theoretical studies for acid corrosion of zinc using glycogen. Chem Pap. 2021;75(4):1387–1399.
  • Pais M, George SD, Rao P. Interfacial adsorption of nanoparticles of maltodextrin for enhanced protection of metal surface. Surf Interfaces. 2021;26:101418–101431.
  • Pais M, George SD, Rao P. Glycogen nanoparticles as a potential corrosion inhibitor. Int J Biol Macromol. 2021;182:2117–2129.
  • Charitha BP, Rao P. Environmentally benign green inhibitor to attenuate acid corrosion of 6061Aluminum-15%(v) SiC(P) composite. J Ind Eng Chem. 2018;58:357–368.
  • Mouanga M, Bercot P. Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; part II: electrochemical analyses. Corros Sci. 2010;52(12):3993–4000.
  • Bentiss F, Traisnel M, Lagrenee M. The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media. Corros Sci. 2000;42(1):127–146.
  • Zhang XG. Corrosion and electrochemistry of zinc. 1st ed. New York (NY): Springer Science Business Media; Plenum Press; 1996. p. 125–153.
  • Abd El Rehim SS, Abd El Wahab SM, Fouad EE, et al. Passivity and passivity breakdown of zinc anode in alkaline medium. Mater Corros. 1995;46(11):633–638.
  • Li WH, He Q, Zhang ST, et al. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. J Appl Electrochem. 2008;38(3):289–295.
  • Cao F, Wei J, Dong J, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in saturated Ca(OH)2 solution with 1 mol L−1 NaCl. Corros Eng Sci Technol. 2018;53(4):283–292.
  • Izadi M, Shahrabi T, Ramezanzadeh B. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers. Appl Surf Sci. 2018;440:491–505.
  • Zarrok H, Zarrouk A, Salghi R, et al. Study of a cysteine derivative as a corrosion inhibitor for carbon steel in phosphoric acid solution. Res Chem Intermed. 2014;40(2):801–815.
  • Korde JM, Sreekumar AV, Kandasubramanian B. Corrosion inhibition of 316L-type stainless steel under marine environments using epoxy/waste plastic soot coatings. SN Appl Sci. 2020;2(7):1–13.
  • Peng T, Xiao R, Rong Z, et al. Polymer nanocomposite-based coatings for corrosion protection. Chem Asian J. 2020;15(23):3915–3941.
  • Ramezanzadeh B, Attar MM, Farzam M. A study on the anticorrosion performance of the epoxy-polyamide nanocomposites containing ZnO nanoparticles. Prog Org Coat. 2011;72(3):410–422.
  • Qi J, Hashimoto T, Thompson GE, et al. Influence of water immersion post-treatment parameters on trivalent chromium conversion coatings formed on AA2024-T351 alloy. J Electrochem Soc. 2016;163(5):C131–C138.
  • Burduhos-Nergis DP, Vizureanu P, Sandu AV, et al. Evaluation of the corrosion resistance of phosphate coatings deposited on the surface of the carbon steel used for carabiners manufacturing. Appl. Sci. 2020;10(8):2753–2767.
  • Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim Acta. 2000;45(15–16):2515–2533.
  • Wei H, Ding D, Wei S, et al. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J Mater Chem A. 2013;1(36):10805–10813.
  • Lam CK, Lau KT. Localized elastic modulus distribution of nanoclay/epoxy composites by using nanoindentation. Compos Struct. 2006;75(1–4):553–558.
  • Hartwig A, Sebald M, Pütz D, et al. Preparation, characterisation and properties of nanocomposites based on epoxy resins – an overview. Macromol Symp. 2005;221(1):127–136.
  • Becker O, Varley R, Simon G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer. 2002;43(16):4365–4373.
  • Chen F, Liu P. Conducting polyaniline nanoparticles and their dispersion for waterborne corrosion protection coatings. ACS Appl Mater Interfaces. 2011;3(7):2694–2702.
  • Chen J, Zhao W. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment. Chem Eng J. 2021;423:130195–130206.
  • Pham GV, Trinh AT, To TXH, et al. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel. Adv Nat Sci Nanosci Nanotechnol. 2014;5(3):035016–035023.
  • Pourhashem S, Rashidi A, Vaezi MR, et al. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf Coat Technol. 2017;317:1–9.
  • Ma IAW, Shafaamri A, Kasi R, et al. Anticorrosion properties of epoxy/nanocellulose nanocomposite coating. Bioresources. 2017;12:2912–2929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.