564
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Long-term durability assessment of 3D printed concrete

, & ORCID Icon
Pages 1921-1936 | Received 25 Apr 2022, Accepted 12 Jul 2022, Published online: 22 Jul 2022

References

  • Hou S, Duan Z, Xiao J, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater. 2021;273:121745.
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art, challenges and opportunities. Autom Constr. 2016;72:347–366.
  • Stefanoni M, Angst U, Elsener B. Corrosion challenges and opportunities in digital fabrication of reinforced concrete. Paper presented at the RILEM International Conference on Concrete and Digital Fabrication; 2018. p. 225–233.
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12(3):261–276.
  • Wu P, Wang J, Wang X. A critical review of the use of 3-D printing in the construction industry. Autom Constr. 2016;68:21–31.
  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019;123:105780.
  • Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf. 2019;30:100894.
  • Ma G, Wang L. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front Struct Civ Eng. 2018;12(3):382–400.
  • Siddika A, Mamun MAA, Ferdous W, et al. 3D-printed concrete: applications, performance, and challenges. J Sustain Cem Based Mater. 2020;9(3):127–164.
  • Zhang J, Wang J, Dong S, et al. A review of the current progress and application of 3D printed concrete. Compos A Appl Sci Manuf. 2019;125:105533.
  • Paul SC, van Zijl GP, Tan MJ, et al. A review of 3D concrete printing systems and materials properties: current status and future research prospects. RPJ. 2018;24(4):784–798.
  • Long W, Tao J, Lin C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J Cleaner Prod. 2019;239:118054.
  • Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–627.
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232.
  • Baz B, Remond S, Aouad G. Influence of the mix composition on the thixotropy of 3D printable mortars. Mag Concr Res. 2022:74(6):
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14(1):104–113.
  • Khoshnevis B. Automated construction by contour crafting—related robotics and information technologies. Autom Constr. 2004;13(1):5–19.
  • Le TT, Austin SA, Lim S, et al. Hardened properties of high-performance printing concrete. Cem Concr Res. 2012;42(3):558–566.
  • Ji G, Xiao J, Zhi P, et al. Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates. Constr Build Mater. 2022;325:126740.
  • Xiao J, Zou S, Yu Y, et al. 3D recycled mortar printing: system development, process design, material properties and on-site printing. J Build Eng. 2020;32:101779.
  • Xiao J, Han N, Zhang L, et al. Mechanical and microstructural evolution of 3D printed concrete with polyethylene fiber and recycled sand at elevated temperatures. Constr Build Mater. 2021;293:123524.
  • Lao W, Li M, Wong TN, et al. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual Phys Prototyp. 2020;15(2):178–193.
  • Baz B, Aouad G, Khalil N, et al. Inter-layer reinforcement of 3D printed concrete elements. Asian J Civ Eng. 2021;22(2):341–349.
  • Baz B, Aouad G, Remond S. Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements. Constr Build Mater. 2020;230:117002.
  • Baz B, Aouad G, Leblond P, et al. Mechanical assessment of concrete–steel bonding in 3D printed elements. Constr Build Mater. 2020;256:119457.
  • Bhardwaj A, Jones SZ, Kalantar N, et al. Additive manufacturing processes for infrastructure construction: a review. J Manuf Sci Eng. 2019;141(9):091010.
  • Bukkapatnam S, Mander J, Paal S, et al. 2017. Workshop report—NSF workshop on additive manufacturing (3D printing) for civil infrastructure design and construction. National Science Foundation (NSF), Arlington, VA; 2017 Jul 13–14. Available from: https://events.tti.tamu.edu/wp-content/uploads/2017/04/nsf-3dp-workshop-report.pdf
  • Samarasinghe DAS, Wood E. Innovative digital technologies. In: Handbook of research on driving transformational change in the digital built environment. Pennsylvania:IGI Global; 2021. p. 142–163.
  • Ji G, Ding T, Xiao J, et al. A 3D printed ready-mixed concrete power distribution substation: materials and construction technology. Materials. 2019;12(9):1540.
  • Salet TA, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp. 2018;13(3):222–236.
  • De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem Concr Res. 2018;112:25–36.
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225.
  • Asprone D, Menna C, Bos FP, et al. Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res. 2018;112:111–121.
  • Nerella VN, Ogura H, Mechtcherine V. Incorporating reinforcement into digital concrete construction. Paper presented at the Proceedings of IASS Annual Symposia; 2018. p. 1–8.
  • Vitharana MG, Paul SC, Kong SY, et al. A study on strength and corrosion protection of cement mortar with the inclusion of nanomaterials. Sustain Mater Technol. 2020;25:e00192.
  • Buswell RA, De Silva WL, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018;112:37–49.
  • Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89.
  • Hewayde E, Nehdi M, Allouche E, et al. Effect of mixture design parameters and wetting-drying cycles on resistance of concrete to sulfuric acid attack. J Mater Civ Eng. 2007;19(2):155–163.
  • Panda B, Sonat C, Yang E, et al. Use of magnesium-silicate-hydrate (MSH) cement mixes in 3D printing applications. Cem Concr Compos. 2021;117:103901.
  • Nerella VN, Näther M, Iqbal A, et al. Inline quantification of extrudability of cementitious materials for digital construction. Cem Concr Compos. 2019;95:260–270.
  • Moelich GM, Kruger J, Combrinck R. Plastic shrinkage cracking in 3D printed concrete. Compos B Eng. 2020;200:108313.
  • Baz B, Aouad G, Kleib J, et al. Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments. Constr Build Mater. 2021;290:123220.
  • Ma L, Zhang Q, Jia Z, et al. Effect of drying environment on mechanical properties, internal RH and pore structure of 3D printed concrete. Constr Build Mater. 2021;315:125731.
  • Van Der Putten J, De Schutter G, Van Tittelboom K. The effect of print parameters on the (micro) structure of 3D printed cementitious materials. Paper presented at the RILEM International Conference on Concrete and Digital Fabrication; 2018. p. 234–244.
  • Rahul AV, Santhanam M, Meena H, et al. Mechanical characterization of 3D printable concrete. Constr Build Mater. 2019;227:116710.
  • Wolfs RJM, Bos FP, Salet TAM. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res. 2019;119:132–140.
  • Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017;83:212–221.
  • Zareiyan B, Khoshnevis B. Interlayer adhesion and strength of structures in contour crafting – effects of aggregate size, extrusion rate, and layer thickness. Autom Constr. 2017;81:112–121.
  • Menéndez E, Matschei T, Glasser FP. 2013. Sulfate attack of concrete. In: Alexander M, Bertron A, De Belie N, editors. Performance of cement-based materials in aggressive aqueous environments. RILEM state-of-the-art reports. Vol. 10. Dordrecht: Springer.
  • ASTM D. Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution; 2012.
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022;17(3):662–681.
  • El Cheikh K, Rémond S, Khalil N, et al. Numerical and experimental studies of aggregate blocking in mortar extrusion. Constr Build Mater. 2017;145:452–463.
  • Khalil N, Aouad G, El Cheikh K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017;157:382–391.
  • Malaeb Z, AlSakka F, Hamzeh F. 3D concrete printing: machine design, mix proportioning, and mix comparison between different machine setups. In: 3D concrete printing technology. Melbourne, Australia: Butterworth-Heinemann; 2019. p. 115–136.
  • ASTM C. Standard test method for flow of hydraulic cement mortar. C1437; 2007.
  • Standard E. 2009. Methods of testing cement-part 1: determination of strength. Ankara: Turkish Standards Institute.
  • Berger S, Aouad G, Coumes CCD, et al. Leaching of calcium sulfoaluminate cement pastes by water at regulated pH and temperature: experimental investigation and modeling. Cem Concr Res. 2013;53:211–220.
  • AFNOR. Essai Pour Béton Durci—Essai de Porosité et de Masse Volumique—NF; 2010. p. 18–459.
  • Tian B, Cohen MD. Does gypsum formation during sulfate attack on concrete lead to expansion? Cem Concr Res. 2000;30(1):117–123.
  • Ragoug R, Metalssi OO, Barberon F, et al. Durability of cement pastes exposed to external sulfate attack and leaching: physical and chemical aspects. Cem Concr Res. 2019;116:134–145.
  • Bellmann F, Möser B, Stark J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem Concr Res. 2006;36(2):358–363.
  • Le Bescop P, Solet C. External sulphate attack by ground water: experimental study on CEM I cement pastes. Rev Eur Gén Civ. 2006;10(9):1127–1145.
  • Xu A, Lu J, Xu J, et al. Sulfate resistance of Portland-limestone cement mortars cured at 20 °C and 60 °C. J Sustain Cem Based Mater. 2021:1–8. https://doi.org/10.1080/21650373.2021.1967813
  • Yoshida N. Sulfate attack on residential concrete foundations in Japan. J Sustain Cem Based Mater. 2019;8(6):327–336.
  • Aziez MN, Bezzar A. Effect of temperature and type of sand on the magnesium sulphate attack in sulphate resisting Portland cement mortars. J Adhes Sci Technol. 2018;32(3):272–290.
  • Tsubone K, Yamaguchi Y, Ogawa Y, et al. Deterioration of concrete immersed in sulfuric acid for a long term. In: Key engineering materials. Vol. 711. Switzerland: Trans Tech Publications Ltd.; 2016. p. 659–664.
  • Vandhiyan R, Kumar KR, Gurumoorthy N, et al. Microstructural characterisation and durability enhancement of concrete with nano silica. IOP Conf Ser Mater Sci Eng. 2020;981(3):032071.
  • Meziane E, Ezziane K, Kenai S, et al. Mechanical, hydration, and durability modifications provided to mortar made with crushed sand and blended cements. J Adhes Sci Technol. 2015;29(18):1987–2005.
  • Sanchez F, Sobolev K. Nanotechnology in concrete – a review. Constr Build Mater. 2010;24(11):2060–2071.
  • Shannag MJ. High strength concrete containing natural pozzolan and silica fume. Cem Concr Compos. 2000;22(6):399–406.
  • Yazıcı H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build Environ. 2007;42(5):2083–2089.
  • Kiran T, Anand N, Nitish Kumar S, et al. Influence of nano-cementitious materials on improving the corrosion resistance and microstructure characteristics of concrete. J Adhes Sci Technol. 2021;35(18):1995–2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.