139
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Simulation analysis on surface morphology and superior adhesive properties of honeybee footpad

ORCID Icon, , , &
Pages 2069-2081 | Received 15 Mar 2022, Accepted 06 Jul 2022, Published online: 14 Oct 2022

References

  • Liang Y, Zhao J, Yan S. Honeybees have hydrophobic wings that enable them to fly through fog and dew. J Bionic Eng. 2017;14(3):549–556.
  • Evangelista C, Kraft P, Dacke M, et al. The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera. J Exp Biol. 2010;213(2):262–270.
  • Bräuer P, Neinhuis C, Voigt D. Attachment of honeybees and greenbottle flies to petal surfaces. Arthropod-Plant Interact. 2017;11(2):171–192.
  • Reber T, Baird E, Dacke M. The final moments of landing in bumblebees, Bombus terrestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016;202(4):277–285.
  • Peng Z, Wang C, Chen S. The microstructure morphology on ant footpads and its effect on ant adhesion. Acta Mech. 2016;227(7):2025–2037.
  • Hosoda N, Nakamoto M, Suga T, et al. Evidence for intermolecular forces involved in ladybird beetle tarsal setae adhesion. Sci Rep. 2021;11(1):7729.
  • Eisenhaure J, Kim S. A review of the state of dry adhesives: biomimetic structures and the alternative designs they inspire. Micromachines. 2017;8(4):125.
  • Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philos Trans R Soc Lond B Biol Sci. 2015;370(1661):20140027.
  • Bosia F, Pugno NM. Editorial: bioinspired wet and dry adhesion. Bioinspir Biomim. 2020;15(4):040401.
  • Federle W, Riehle M, Curtis AS, et al. An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol. 2002;42(6):1100–1106.
  • O'Donnell M, Deban S. Cling performance and surface area of attachment in plethodontid salamanders. J. Exp. Biol. 2020;223(17)
  • Federle W, Brainerd EL, McMahon TA, et al. Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA. 2001;98(11):6215–6220.
  • Persson BNJ. Biological adhesion for locomotion: basic principles. J Adhes Sci Technol. 2007;21(12-13):1145–1173.
  • Persson BNJ. Wet adhesion with application to tree frog adhesive toe pads and tires. J Phys Condens Matter. 2007;19(37):376110.
  • Langowski JKA, Dodou D, Kamperman M, et al. Tree frog attachment: mechanisms, challenges, and perspectives. Front Zool. 2018;15:32.
  • Liu Q, Meng F, Wang X, et al. Tree frog-inspired micropillar arrays with nanopits on the surface for enhanced adhesion under wet conditions. ACS Appl Mater Interfaces. 2020b;12(16):19116–19122.
  • Ditsche P, Summers AP. Aquatic versus terrestrial attachment: water makes a difference. Beilstein J Nanotechnol. 2014;5:2424–2439.
  • Meloni G, Tricinci O, Degl'Innocenti A, et al. A protein-coated micro-sucker patch inspired by octopus for adhesion in wet conditions. Sci Rep. 2020;10(1):15480.
  • Akram Bhuiyan MS, Roland JD, Liu B, et al. In situ deactivation of catechol-containing adhesive using electrochemistry. J Am Chem Soc. 2020;142(10):4631–4638.
  • Jin Q, Gao H. Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2006;2(1):51–58.
  • Su Y, Ji B, Huang Y, et al. Concave biological surfaces for strong wet adhesion. Acta Mech Solida Sin. 2009;22(6):593–604.
  • Gu Z, Li S, Zhang F, et al. Understanding surface adhesion in nature: a peeling model. Adv Sci (Weinh). 2016;3(7):1500327.
  • Chen Y, Meng J, Gu Z, et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv Funct Mater. 2020;30(5):1905287.
  • Li J, Liu J, Ma C, et al. Mechanisms underlying the biological wet adhesion: coupled effects of interstitial liquid and contact geometry. J Bionic Eng. 2020;17(3):448–456.
  • Nguyen HNG, Millet O, Zhao C, et al. Theoretical and experimental study of capillary bridges between two parallel planes. Eur J Environ Civil Eng. 2022;26(3):1198–1208.
  • Goodwyn PP, Peressadko A, Schwarz H, et al. Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (insecta: Orthoptera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192(11):1233–1243.
  • Slater DM, Vogel MJ, Macner AM, et al. Beetle-inspired adhesion by capillary-bridge arrays: pull-off detachment. J Adhes Sci Technol. 2014;28(3-4):273–289.
  • Ginot G, Kratz FS, Walzel F, et al. Pressure-deformation relations of elasto-capillary drops (Droploons) on capillaries. 2021.
  • Liang Y-E, Maharsih IK, Sheng Y-J, et al. Capillary interactions between droplets and ideal roughness: Attractive protrusion and repulsive trench. Exp. Therm Fluid Sci. 2019;105:216–222. doi:10.1016/j.expthermflusci.2019.03.025
  • Autumn K, Anne M. Mechanisms of adhesion in geckos. Integr. Comp. Biol. 2002;42(6):1081–1090.
  • Cai M. Gait design and path planning for a bionic gecko-liked robot. J Mech Eng. 2010;46:9.
  • Zhang W, Wang R, Sun Z, et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem Soc Rev. 2020;49(2):433–464.
  • Frazier SF, Larsen GS, Neff D, et al. Elasticity and movements of the cockroach tarsus in walking. J Comp Physiol A. 1999;185(2):157–172.
  • Noah JA, Quimby L, Frazier SF, et al. Walking on a ‘peg leg': extensor muscle activities and sensory feedback after distal leg denervation in cockroaches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004;190(3):217–231.
  • Wang K, He B, Shen RJ. Influence of surface roughness on wet adhesion of biomimetic adhesive pads with planar microstructures. Micro Nano Lett. 2012;7(12):1274–1277.
  • Cruz TL, Pérez SM, Chiappe ME. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking drosophila. Curr Biol. 2021;31(20):4596.e5–4607.e5.
  • Bullock J, Drechsler P, Federle W. Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol. 2008;211(Pt 20):3333–3343.
  • Dirks JH, Federle W. Fluid-based adhesion in insects: principles and challenges. Soft Matter. 2011;7(23):11047–11053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.