1,027
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The influence of wood surface treatments with different biomolecules on dry and wet strength of linear friction welded joints

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3167-3186 | Received 23 Aug 2022, Accepted 14 Feb 2023, Published online: 15 Mar 2023

References

  • Hong H, Gao L, Zheng Y, et al. A path of Multi-Energy hybrids of concentrating solar energy and carbon fuels for low CO2 emission. ES Energy Environ. 2021;13:1–7.
  • Xu J, Zhu P, El Azab IH, et al. An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole. Chin J Chem Eng. 2022;49:187–197.
  • Wei D, Weng M, Mahmoud MHH, et al. Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv Compos Hybrid Mater. 2022;5(3):1910–1921.
  • Cao Y, Weng M, Mahmoud MHH, et al. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater. 2022;5(2):1253–1267.
  • Cheng H, Xing L, Zuo Y, et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater. 2022;5(2):755–765.
  • Churkina G, Organschi A, Reyer CPO, et al. Buildings as a global carbon sink. Nat Sustain. 2020;3(4):269–276.
  • Liang C, Du Y, Wang Y, et al. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater. 2021;4(4):979–988.
  • Yuan B, Wang Y, Elnaggar AY, et al. Physical vapor deposition of graphitic carbon nitride (g-C3N4) films on biomass substrate: optoelectronic performance evaluation and life cycle assessment. Adv Compos Hybrid Mater. 2022;5(2):813–822.
  • Yuan B, Guo M, Murugadoss V, et al. Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater. 2021;4(2):286–293.
  • Maddodi BS, Lu A, Devesh S, et al. Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application – a mechanical characterization using experimental and statistical analysis. Eng Sci. 2022;18:329–336.
  • Lian M, Huang Y, Liu Y, et al. An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Mater. 2022;5(3):1612–1657.
  • Culebras M, Collins GA, Beaucamp A, et al. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci. 2022;17:195–203.
  • Wu Q, Gao L, Huang M, et al. Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv Compos Hybrid Mater. 2022;5(2):1044–1053.
  • Mu L, Dong Y, Li L, et al. Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater Manuf. 2021;11:72–80.
  • Ferdosian F, Pan Z, Gao G, et al. Bio-based adhesives and evaluation for wood composites application. Polymers. 2017;9(12):70.
  • Puettmann M, Wilson J. Life-cycle analysis of wood products: cradle-to-gate LCI of residential wood building materials. Wood Fiber Sci. 2005;37:18–29.
  • Zhao S, Niu M, Peng P, et al. Edge oleylaminated graphene as ultra-stable lubricant additive for friction and wear reduction. Eng. Sci. 2020;9:77–83.
  • Li W, Chen Q, Zhang W, et al. Boron oxide/alumina nanocomposites as lubricant oil additives to save friction-induced energy waste. ES Mater Manuf. 2022;18:10–17.
  • Li W, Wang M, Chen Q, et al. A new preparation method of copper oxide/aluminium oxide nanocomposites with enhanced anti-friction properties. ES Mater Manuf. 2023;19:692.
  • Hua J, Björling M, Larsson R, et al. Friction control of chitosan-Ag hydrogel by silver ion. ES Mater Manuf. 2022;16:30–36.
  • He Y, Duan R, Zhang Q, et al. Reinforce the mechanical toughness, heat resistance, and friction and wear resistance of phenolic resin via constructing self-assembled hybrid particles of graphite oxide and zirconia as nano-fillers. Adv Compos Hybrid Mater. 2021;4(2):317–323.
  • Gfeller B, Zanetti M, Properzi M, et al. Wood bonding by vibrational welding. J Adhes Sci Technol. 2003;17(11):1573–1589.
  • Hahn B, Stamm B, Weinand Y. Linear friction welding of spruce boards: experimental investigations on scale effects due to humidity evaporation. Wood Sci Technol. 2014;48(4):855–871.
  • Leban JM, Pizzi A, Wieland S, et al. X-ray microdensitometry analysis of vibration-welded wood. J Adhes Sci Technol. 2004;18(6):673–685.
  • Vaziri M, Lindgren O, Pizzi A. Optimization of tensile-shear strength for linear welded scots pine. J Adhes Sci Technol. 2012;26(1-3):109–119.
  • Mansouri HR, Omrani P, Pizzi A. Improving the water resistance of linear vibration-welded wood joints. J Adhes Sci Technol. 2009;23(1):63–70.
  • Amirou S, Pizzi A, Delmotte L. Investigations of mechanical properties and chemical changes occurring during welding of thermally modified ash wood. J Adhes Sci Technol. 2020;34(1):13–24.
  • Vaziri M, Sandberg D. Welding of thermally modified wood and thermal modification of the welded wood: effects on the shear strength under climatic conditions [CT scanning; digital microscopy; shear strength; thermal modification; ThermoWood]. BioResources. 2021;16(2):3224–3234.
  • Vaziri M, Karlsson O, Abrahamsson L, et al. Wettability of welded wood-joints investigated by the Wilhelmy method: part 1. Determination of apparent contact angles, swelling, and water sorption. Holzforschung. 2021;75(1):65–74.
  • Omrani P, Pizzi A, Mansouri HR, et al. Physico-chemical causes of the extent of water resistance of linearly welded wood joints. J Adhes Sci Technol. 2009;23(6):827–837.
  • Rhême M, Botsis J, Cugnoni J, et al. Influence of the moisture content on the fracture characteristics of welded wood joint. Part 2: mode II fracture. Holzforschung. 2013;67(7):755–761.
  • Rhême M, Botsis J, Cugnoni J, et al. Influence of the moisture content on the fracture characteristics of welded wood joint. Part 1: mode I fracture. Holzforschung. 2013;67(7):747–754.
  • Ruponen J, Čermák P, Rhême M, et al. Reducing the moisture sensitivity of linear friction welded birch (Betula pendula L.) wood through thermal modification. J Adhes Sci Technol. 2015;29(22):2461–2474.
  • Vaziri M, Lindgren O, Pizzi A, et al. Moisture sensitivity of scots pine joints produced by linear frictional welding. J Adhes Sci Technol. 2010;24(8-10):1515–1527.
  • Zor M, Vaziri M, Sandberg D. Water resistance of welded birch wood produced by linear friction. Kastamonu Univ J For Fac. 2020;20(3):266–271.
  • Amirou S, Pizzi A, Belleville B, et al. Water resistance of natural joint of spruce produced by linear friction welding without any treatment. Int Wood Prod J. 2017;8(4):201–207.
  • Amirou S, Pizzi A, Delmotte L. Citric acid as waterproofing additive in butt joints linear wood welding. Eur J Wood Prod. 2017;75(4):651–654.
  • Zigon J, Pizzi A, Zhang H, et al. The influence of heat and chemical treatments of beech wood on the shear strength of welded and UF bonded specimens. Eur J Wood Prod. 2015;73(5):685–687.
  • Pizzi A, Mansouri HR, Leban JM, et al. Enhancing the exterior performance of wood joined by linear and rotational welding. J Adhes Sci Technol. 2011;25(19):2717–2730.
  • Wieland S, Shi B, Pizzi A, et al. Vibration welding of wood: X-ray tomography, additives, radical concentration. For Prod J. 2005;55(1):84–87.
  • Pizzi A, Zhou X, Navarrete P, et al. Enhancing water resistance of welded dowel wood joints by acetylated lignin. J Adhes Sci Technol. 2013;27(3):252–262.
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54(1):519–546.
  • Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev. 2019;107:232–249.
  • Glasser WG. About making lignin great again—some lessons from the Past. Front Chem. 2019;7:565.
  • Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843.
  • Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 2002;10(1/2):39–48.
  • Vishtal A, Kraslawski A. Challenges in industrial applications of technical lignins. BioResources. 2011;6(3):3547–3568.
  • Xu C, Ferdosian F. Conversion of lignin into bio-based chemicals and materials. In: He L-N, Rogers RD, Su D, editors. Green chemistry and sustainable technology. Berlin: Springer; 2017. p. 91–109.
  • Lewis NG, Lantzy TR. Lignin in adhesives. In: Hemingway RH, Conner AJ, editors. Adhesives from renewable resources. Washington, DC: American Chemical Society; 1989. p. 13–26.
  • Pizzi A. Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol. 2006;20(8):829–846.
  • Ghahri S, Pizzi A. Improving soy-based adhesives for wood particleboard by tannins addition. Wood Sci Technol. 2018;52(1):261–279.
  • Spina S, Zhou X, Segovia C, et al. Phenolic resin adhesives based on chestnut (Castanea sativa) hydrolysable tannins. J Adhes Sci Technol. 2013;27(18-19):2103–2111.
  • Ghahri S, Chen X, Pizzi A, et al. Natural tannins as new cross-linking materials for soy-based adhesives. Polymers. 2021;13(4):595.
  • Zhou X, Du G. Applications of tannin resin adhesives in the wood industry. In: Aires A, editor. Tannins - structural properties, biological properties and current knowledge. London: IntechOpen; 2020. p. 97–103
  • Monteil-Rivera F, Paquet L. Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crops Prod. 2015;65:446–453.
  • Xiao B, Sun XF, Sun R. The chemical modification of lignins with succinic anhydride in aqueous systems. Polym Degrad Stab. 2001;71(2):223–231.
  • DIN EN ISO 11357-2. Plastics – differential scanning calorimetry (DSC) – part 2: determination of glass transition temperature and step height. Berlin: Beuth Verlag GmbH; 2020.
  • Meng X, Crestini C, Ben H, et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat Protoc. 2019;14(9):2627–2647.
  • Hahn B, Vallée T, Stamm B, et al. Moment resisting connections composed of friction-welded spruce boards: experimental investigations and numerical strength prediction. Eur J Wood Prod. 2014;72(2):229–241.
  • Gfeller B, Pizzi AP, Zanetti M, et al. Solid wood joints by in situ welding of structural wood constituents. Holzforschung. 2004;58(1):45–52.
  • Rautkari L, Properzi M, Pichelin F, et al. Surface modification of wood using friction. Wood Sci Technol. 2009;43(3-4):291–299.
  • Frihart CR. Wood adhesion and adhesives. In: Rowell RM, editor. Handbook of wood chemistry and wood composites. New York (NY): CRC Press; 2005. p. 215–278.
  • Schultz J, Nardin M. Theories and mechanisms of adhesion. In: Pizzi A, Mittal KL, editors. Handbook of adhesive technology. 2nd ed. Boca Raton (FL): CRC Press; 2003. p. 53–68.
  • Glasser WG, Jain RK. Lignin derivatives. I. Alkanoates. 1993;47(3):225–233.
  • Stark NM, Yelle DJ, Agarwal UP. Techniques for characterizing lignin. In: Faruk O, Sain M, editors. Lignin in polymer composites. Norwich (NY): William Andrew Publishing; 2016. p. 49–66.
  • Chen Y, Stark NM, Cai Z, et al. Chemical modification of kraft lignin: effect on chemical and thermal properties. BioResources. 2014;9(3):5488–5500.
  • Faix O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung. 1991;45(s1):21–28.
  • Zhou S, Brown RC, Bai X. The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chem. 2015;17(10):4748–4759.
  • Han T, Sophonrat N, Tagami A, et al. Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel. 2019;235:1061–1069.
  • Scarica C, Suriano R, Levi M, et al. Lignin functionalized with succinic anhydride as building block for biobased thermosetting polyester coatings. ACS Sustain Chem Eng. 2018;6(3):3392–3401. 2018/03/05
  • Wang C, Kelley SS, Venditti RA. Lignin-Based thermoplastic materials. ChemSusChem. 2016;9(8):770–783.
  • Sharma RK, Wooten JB, Baliga VL, et al. Characterization of chars from pyrolysis of lignin. Fuel. 2004;83(11-12):1469–1482.
  • Zhao Y, Tagami A, Dobele G, et al. The impact of lignin structural diversity on performance of cellulose nanofiber (CNF)-starch composite films. Polymers. 2019;11(3):538.
  • Bischof-Vukusic S, Katovic D, Schramm C, et al. Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood. Holzforschung. 2006;60(4):439–444.
  • Lee SH, Md Tahir P, Lum WC, et al. A review on citric acid as green modifying agent and binder for wood. Polymers. 2020;12(8):1692.
  • Akpan EI. Melt-processing of lignin. In: Akpan EI, Adeosun SO, editors. Sustainable lignin for carbon fibers: principles, techniques, and applications. Cham: Springer Nature Switzerland AG; 2019. p. 281–324.
  • Olsson A-M, Salmén L. The effect of lignin composition on the viscoelastic properties of wood. Nord Pulp Pap Res J. 1997;12(3):140–144.
  • Sun Q, Khunsupat R, Akato K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem. 2016;18(18):5015–5024.
  • Crestini C, Lange H, Sette M, et al. On the structure of softwood kraft lignin. Green Chem. 2017;19(17):4104–4121.