596
Views
27
CrossRef citations to date
0
Altmetric
Review Articles

Research developments and technological advancements in conventional and non-conventional machining of superalloys – a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 3053-3124 | Received 03 Nov 2022, Accepted 27 Feb 2023, Published online: 30 Mar 2023

References

  • Pollock T, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power. 2006;22(2):361–374.
  • Ezugwu EO. High speed machining of aero-engine alloys. J Braz Soc Mech Sci Eng. 2004;26(1):1–11.
  • Choudhury I, El-Baradie M. Machinability of nickel-based superalloys: a general review. J Mater Process Technol. 1998;77(1–3):278–284.
  • Ezugwu EO. Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf. 2005;45(12–13):1353–1367.
  • Zhu Z. Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf. 2013;64:60–77.
  • Chen Q, Stamatelopolous G-N, Helmrich A, et al. Materials qualification for 700 degree C power plants. In: Proceedings of the fifth international conference on advances in materials technology for fossil power plants; 2007. p. 231–259.
  • Babu MN, Anandan V, Yıldırım ÇV, et al. Investigation of the characteristic properties of graphene-based nanofluid and its effect on the turning performance of Hastelloy C276 alloy. Wear. 2022;510–511:204495.
  • Sharman ARC, Hughes JI, Ridgway K. Workpiece surface integrity and tool life issues when turning Inconel 718™ nickel based superalloy. Mach Sci Technol. 2004;8(3):399–414.
  • Yıldırım ÇV, Sarıkaya M, Kıvak T, et al. The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol Int. 2019;134:443–456.
  • Yildirim ÇV, Kivak T, Sarikaya M, et al. Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Mater Res Technol. 2020;9(2):2079–2092.
  • Rubaiee S, Danish M, KumarGupta M, et al. Key initiatives to improve the machining characteristics of Inconel-718 alloy: experimental analysis and optimization. J Mater Res Technol. 2022;21:2704–2720.
  • Şirin Ş, Sarıkaya M, Yıldırım ÇV, et al. Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribol Int. 2021;153:106673.
  • Payal HS, Sethi BL. Non-conventional machining processes as viable alternatives for production with specific reference to electrical discharge machining. J Sci Ind Res. 2003;62:678–682.
  • Klocke F, Welling D, Klink A, et al. Evaluation of advanced Wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Proc CIRP. 2014;14:430–435.
  • Yilbas BS. Parametric study for laser hole drilling of Inconel 617 alloy. Lasers Eng. 2002;12(1):1–16.
  • Klocke A, Klink D, Veselovac D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann Manuf Technol. 2014;63(2):703–726.
  • Nair A, Kumanan S. Multi performance optimization of abrasive water jet machining of Inconel 617 using WPCA. Mater Manuf Process. 2016;32:6914.
  • Lan L, Ren Z, Yu J, et al. Interfacial microstructure and high-temperature strength in silicon nitride/nickel-based superalloy bonding. J Adhes Sci Technol. 2016;30(13):1430–1440.
  • Escobar-Palafox GA, Gault RS, Ridgway K. Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Proc CIRP. 2012;1(1):404–408.
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003;14:207–222.
  • Fahimnia B, Tang CS, Davarzani H, et al. Quantitative models for managing supply chain risks: a review. Eur J Oper Res. 2015;247(1):1–15.
  • Rowley J, Stack F. Conducting a literature review. Manag Res News. 2004;27(6):31–39.
  • Knutas A, Hajikhani A, Salminen J, et al. Cloud-based bibliometric analysis service for systematic mapping studies. ACM Int Conf Proc Ser. 2015;1008(212):184–191.
  • Persson O, Danell R, Schneider JW. How to use BibExcel for various types of bibliometric analysis. In: Celebrating scholarly communication studies: a festschrift for Olle Persson at his 60th birthday; 2009. p. 9–24.
  • Seuring S, Müller M. From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod. 2008;16(15):1699–1710.
  • GEPHI. Graphs made handy; 2013. https://gephi.wordpress.com/'. 31 JANUARY 2023 by MATHIEU JACOMY
  • Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media; 2009. p. 361–362.
  • Ding Y, Cronin B. Popular and/or prestigious? Measures of scholarly esteem. Inf Process Manag. 2011;47(1):80–96.
  • Ezugwu EO, Wang ZM, Machado A. The machinability of nickel-based alloys: a review. J Mater Process Technol. 1999;86(1–3):1–16.
  • Ezugwu EO, Bonney J, Yamane Y. An overview of the machinability of aeroengine alloys. J Mater Process Technol. 2003;134(2):233–253.
  • Arunachalam R, Mannan MA. Machinability of nickel-based high temperature alloys. Mach Sci Technol. 2000;4(1):127–168.
  • Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti–6Al–6V–2Sn. Wear. 1997;202(2):142–148.
  • Rahman M, Seah WKH, Teo TT. The machinability of Inconel 718. J Mater Process Technol. 1997;63(1–3):199–204.
  • Dudzinski D, Devillez A, Moufki A, et al. A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf. 2004;44(4):439–456.
  • Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manuf. 2011;51(3):250–280.
  • Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst. 1998;30(1/7):107–117.
  • Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70:1–6.
  • Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks. Proc Natl Acad Sci U S A. 2004;101(9):2658–2663.
  • Blondel VD, Guillaume J-L, Lambiotte R, et al. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;10008(10):6.
  • Yuan ZJ, Zhou M, Dong S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol. 1996;62(4):327–330.
  • Wang ZY, Rajurkar KP. Cryogenic machining of hard-to-cut materials. Wear. 2000;239(2):168–175.
  • Yildiz Y, Nalbant M. A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf. 2008;48(9):947–964.
  • Wang KP, Rajurkar J, Fan S, et al. Hybrid machining of Inconel 718. Int J Mach Tools Manuf. 2003;43(13):1391–1396.
  • Smart EF, Trent EM. Temperature distribution in tools used for cutting iron, titanium and nickel. Int J Prod Res. 1975;13:265–290.
  • Thakur DG, Ramamoorthy B, Vijayaraghavan L. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des. 2009;30(5):1718–1725.
  • Tönshoff K, Mohlfeld A, Leyendecker T, et al. Wear mechanisms of (Ti–Al)N coatings in dry drilling. Surf Coat Technol. 1997;94–95:603–609.
  • Ucun T, Aslantas K, Bedir F, et al. An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear. 2013;300(1–2):8–19.
  • Liao YS, Shiue RH. Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear. 1996;193(1):16–24.
  • Sharman DK, Aspinwall RC, Dewes P, et al. Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear. 2001;249(5–6):473–481.
  • Sarhan A, Sayed R, Nassr AA, et al. Interrelationships between cutting force variation and tool wear in end-milling. J Mater Process Technol. 2001;109(3):229–235.
  • Prengel HG, Jindal PC, Wendt KH, et al. A new class of high performance PVD coatings for carbide cutting tools. Surf Coat Technol. 2001;139(1):25–34.
  • Pawade RS, Joshi SS, Brahmankar PK, et al. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. J Mater Process Technol. 2007;192–193(10):139–146.
  • Subhas BK, Bhat R, Ramachandra K, et al. Simultaneous optimization of machining parameters for dimensional instability control in aero gas turbine components made of Inconel 718 alloy. J Manuf Sci Eng Trans ASME. 2000;122(3):586–590.
  • Tazehkandi AH, Pilehvarian F, Davoodi B. Experimental investigation on removing cutting fluid from turning of Inconel 725 with coated carbide tools. J Clean Prod. 2014;80:271–281.
  • Sharman ARC, Amarasinghe A. Tool life and surface integrity aspects when drilling and hole making in Inconel 718. J Mater Process Technol. 2008;200(1–3):424–432.
  • Li HZ, Zeng H, Chen XQ. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. J Mater Process Technol. 2006;180(1–3):296–304.
  • Nabhani F. Wear mechanisms of ultra-hard cutting tools materials. J Mater Process Technol. 2001;115(3):402–412.
  • Liao YS, Lin HM, Wang JH. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. J Mater Process Technol. 2008;201(1–3):460–465.
  • Jindal PC, Santhanam AT, Schleinkofer U, et al. Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int J Refract Met Hard Mater. 1999;17(1):163–170.
  • Obikawa T, Yamaguchi M, Funai K, et al. Air jet assisted machining of nickel-base superalloy. Int. J. Mach. Tools Manuf. 2012;61:20–26. doi:10.1016/j.ijmachtools.2012.05.005.
  • Schulz H, Dörr J, Rass IJ, et al. Performance of oxide PVD-coatings in dry cutting operations. Surf Coat Technol. 2001;146–147:480–485.
  • Nalbant M, Altin A, Gökkaya H. The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys. Mater Des. 2007;28(5):1719–1724.
  • Sadat AB, Bailey JA. Some observations on surface damage during machining of bearing bronze. Wear. 1986;108:255–268.
  • Thakur DG, Ramamoorthy B, Vijayaraghavan L. Some investigations on high speed dry machining of aerospace material inconel 718 using multicoated carbide inserts. Mater. Manuf. Processes. 2012;27(10):1066–1072. doi:10.1080/10426914.2011.654158.
  • Machado AR, Wallbank J. The effect of extremely low lubricant volumes in machining. Wear. 1997;210(1–2):76–82.
  • Brandt G, Gerendas A, Mikus M. Wear mechanisms of ceramic cutting tools when machining ferrous and non-ferrous alloys. J Eur Ceram Soc. 1990;6(5):273–290.
  • Narutaki N, Yamane Y, Hayashi K, et al. High-speed machining of Inconel 718 with ceramic tools. CIRP Ann Manuf Technol. 1993;42(1):103–106.
  • Jianxin D, Lili L, Jianhua L, et al. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys. Int J Mach Tools Manuf. 2005;45(12–13):1393–1401.
  • Nalbant M, Altin A, Gökkaya H. The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater Des. 2007;28(4):1334–1338.
  • Devillez G, Coz S, Dominiak D, et al. Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol. 2011;211(10):1590–1598.
  • Mehrotra PK. Applications of ceramic cutting tools. In: Advanced ceramic tools for machining application – III. Vol. 138. Switzerland: Transtec Publications Ltd; 1997. p. 1–24. https://doi.org/10.4028/www.scientific.net/kem.138-140.1
  • Jahanbakhsh M, Akhavan Farid A, Lotfi M. Optimal flank wear in turning of Inconel 625 super-alloy using ceramic tool. Proc Inst Mech Eng B J Eng Manuf. 2016;232:1–9.
  • Antonialli AÍS, Magri A, Diniz AE. Tool life and tool wear in taper turning of a nickel-based superalloy. Int J Adv Manuf Technol. 2016;87:1–10.
  • Jafarian F, Umbrello D, Golpayegani S, et al. Experimental investigation to optimize tool life and surface roughness in Inconel 718 machining. Mater Manuf Process. 2016;31(13):1683–1691.
  • Costes JPP, Guillet Y, Poulachon G, et al. Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tools Manuf. 2007;47(7–8):1081–1087.
  • Zlamal T, Petru J, Vortel O, et al. Mechanisms of cutting blade wear and their influence on cutting ability of the tool during machining special alloys. Adv Sci Technol J. 2016;10(31):144–150.
  • Choudhury I, El-Baradie M. Machining nickel base superalloys: Inconel 718. Proc Inst Mech Eng B J Eng Manuf. 1998;212(3):195–206.
  • Devillez A, Schneider F, Dominiak S, et al. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear. 2007;262(7–8):931–942.
  • Fan YH, Hao ZP, Zheng ML, et al. Study of surface quality in machining nickel-based alloy Inconel 718. Int J Adv Manuf Technol. 2013;69(9–12):2659–2667.
  • Bhatt A, Attia H, Vargas R, et al. Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int. 2010;43(5–6):1113–1121.
  • Thakur A, Gangopadhyay S. Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825. Tribol Int. 2016;102:198–212.
  • Mitrofanov AV, Ahmed N, Babitsky VI, et al. Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol. 2005;162–163:649–654.
  • Ahmed N, Mitrofanov AV, Babitsky VI, et al. Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater Sci Eng A. 2006;424(1–2):318–325.
  • Tavakoli S, Attia H, Vargas R, et al. Laser assisted finish turning of Inconel 718-process optimization. Proc ASME Int Manuf Sci Eng Conf. 2009;1:833–840.
  • Venkatesh G, Chakradhar D. Influence of thermally assisted machining parameters on the machinability of Inconel 718 superalloy. Silicon. 2017;9(6):1–11.
  • Ezugwu EO, Bonney J. Finish machining of nickel-base Inconel 718 alloy with coated carbide tool under conventional and high-pressure coolant supplies. Tribol Trans. 2005;48(1):76–81.
  • Kamata Y, Obikawa T. High speed MQL finish-turning of inconel 718 WITH different coated tools. J. Mater. Process. Technol. 2007;192-193:281–286. doi:10.1016/j.jmatprotec.2007.04.052.
  • Obikawa T, Kamata Y, Asano Y, et al. Micro-liter lubrication machining of Inconel 718. Int J Mach Tools Manuf. 2008;48(15):1605–1612.
  • Pusavec F, Deshpande A, Yang S, et al. Sustainable machining of high temperature nickel alloy – Inconel 718: part 1 – predictive performance models. J Clean Prod. 2014;81:255–269.
  • Kaynak Y. Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. Int J Adv Manuf Technol. 2014;72(5–8):919–933.
  • Tazehkandi AM, Shabgard MR, Pilehvarian F. On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706. J Clean Prod. 2015;104:422–435.
  • Ezugwu EO, Bonney J, Fadare DA, et al. Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures. J Mater Process Technol. 2005;162–163:609–614.
  • Tazehkandi AH, Shabgard M, Kiani G, et al. Investigation of the influences of polycrystalline cubic boron nitride (PCBN) tool on the reduction of cutting fluid consumption and increase of machining parameters range in turning Inconel 783 using spray mode of cutting fluid with compressed air. J Clean Prod. 2016;135:1637–1649.
  • Chetan, Behera BC, Ghosh S, et al. Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram Int. 2016;42(13):14873–14885.
  • Isik Y. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy. Adv Mech Eng. 2016;8(5):1–8.
  • Alagan NT, Beno T, Wretland A. Investigation of modified cutting insert with forced coolant application in machining of alloy 718. In: 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII). Vol. 42; 2016. p. 481–486.
  • Zhuang K, Zhang X, Zhu D, et al. Employing preheating- and cooling-assisted technologies in machining of Inconel 718 with ceramic cutting tools: towards reducing tool wear and improving surface integrity. Int J Adv Manuf Technol. 2015;80(9–12):1815–1822.
  • Chetan, Ghosh S, Rao P. Environment friendly machining of Ni–Cr–Co based super alloy using different sustainable techniques. Mater Manuf Process. 2016;31(7):852–859.
  • Thakur DG, Ramamoorthy B, Vijayaraghavan L. Machinability investigation of inconel 718 in high-speed turning. Int J Adv Manuf Technol. 2009;45(5-6):421–429. doi:10.1007/s00170-009-1987-x.
  • Zhou J, Bushlya V, Avdovic P, et al. Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int J Adv Manuf Technol. 2012;58(1–4):141–151.
  • Darwish SM. Machining of difficult-to-cut materials with bonded tools. Int J Adhes Adhes. 2000;20(4):279–289.
  • Thakur, B. Ramamoorthy, and L. Vijayaraghavan, Optimization of high speed turning parameters of superalloy Inconel 718 material using Taguchi technique, Indian J. Eng. Mater. Sci., vol. 16, no. 1, pp. 44–50, 2009, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-65649090251&partnerID=40&md5=1fcb7f3ccf2772238bdfaf47a804d528
  • El-Wardany TI, Mohammed E, Elbestawi MA. Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. Int J Mach Tools Manuf. 1996;36(5):611–634.
  • Bailey JA. Surface damage during machining of annealed 18% nickel maraging steel. Part 2 – lubricated conditions. Wear. 1977;42(2):297–303.
  • Ezugwu EO, Tang SH. Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. J Mater Process Technol. 1995;55(2):63–69.
  • Subhas BK, Bhat R, Ramachandra K, et al. Dimensional instability studies in machining of Inconel 718 nickel based superalloy as applied to aerogas turbine components. J Eng Gas Turbines Power. 2000;122:55.
  • Imran M, Mativenga PT, Kannan S, et al. An experimental investigation of deep-hole microdrilling capability for a nickel-based superalloy. Proc Inst Mech Eng B J Eng Manuf. 2008;222(12):1589–1596.
  • Kwong J, Axinte DA, Withers PJ, et al. Minor cutting edge–workpiece interactions in drilling of an advanced nickel-based superalloy. Int J Mach Tools Manuf. 2009;49(7–8):645–658.
  • M’Saoubi R, Larsson T, Outeiro J, et al. Surface integrity analysis of machined Inconel 718 over multiple length scales. CIRP Ann Manuf Technol. 2012;61(1):99–102.
  • Arisoy YM, Guo C, Kaftanoglu B, et al. Investigations on microstructural changes in machining of Inconel 100 alloy using face turning experiments and 3D finite element simulations. Int J Mech Sci. 2016;107:80–92.
  • Komanduri R, Reed WR. Evaluation of carbide grades and a new cutting geometry for machining titanium alloys. Wear. 1983;92(1):113–123.
  • Alauddin M, El Baradie MA, Hashmi MSJ. Tool-life testing in the end milling of Inconel 718. J Mater Process Technol. 1995;55(3–4):321–330.
  • Gatto A, Iuliano L. Advanced coated ceramic tools for machining superalloys. Int. J. Mach. Tools Manuf. 1997;37(5):591–605. doi:10.1016/S0890-6955(96)00075-2.
  • Gatto and Iuliano, Chip Formation Analysis in High Speed Machining of a Nickel Base Superalloy with Silicon Carbide Whisker-Reinforced Alumina, Int. J. Mach. Tools Manuf., vol. 34, no. 8, pp. 1147–1161, 1994, doi:10.7763/IJCTE.2012.V4.544.
  • G. Liu and M. Chen, “Experiment study on machinability of six kinds of wrought nickel-based superalloys,” in Advances in materials manufacturing science and technology II, 2006, vol. 532–533, p. 444+.
  • Ezugwu EO, Wang ZM, Okeke CI. Tool life and surface integrity when machining inconel 718 WITH PVD- AND CVD-coated tools. Tribol. Trans. 1999;42(2):353–360. doi:10.1080/10402009908982228.
  • Ezugwu EO, Wang ZM, Machado AR. Wear of coated carbide tools when machining nickel (Inconel 718) AND titanium base (Ti-6A1-4V) alloys. Tribol. Trans. 2000;43(2):263–268. doi:10.1080/10402000008982338.
  • López De Lacalle LN, Pérez J, Llorente JI, et al. Advanced cutting conditions for the milling of aeronautical alloys. J. Mater. Process. Technol. 2000;100(1-3):1–11. doi:10.1016/S0924-0136(99)00372-6.
  • Jawaid A, Koksal S, Sharif S. Wear behavior of PVD AND CVD coated carbide tools when face milling inconel 718. Tribol. Trans. 2000;43(2):325–331. doi:10.1080/10402000008982347.
  • Sharman A, Dewes RC, Aspinwall DK. Tool life when high speed ball nose end milling inconel 718™. J. Mater. Process. Technol. 2001;118(1-3):29–35. doi:10.1016/S0924-0136(01)00855-X.
  • Jawaid A, Koksal S, Sharif S. Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling inconel 718 aerospace alloy. J. Mater. Process. Technol. 2001;116(1):2–9. doi:10.1016/S0924-0136(01)00850-0.
  • Ducros C, Benevent V, Sanchette F. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools. Surf. Coat. Technol. 2003;163-164:681–688. doi:10.1016/S0257-8972(02)00656-4.
  • E. O. Ezugwu and J. Bonney, Effect of high-pressure coolant supplies when machining nickel-base, inconel 718, alloy with ceramic tools, Tribol. Trans., vol. 46, no. 4, pp. 580–584, 2003, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0347592433&partnerID=40&md5=bc63af354f19c377c0fe26d10debfea3
  • Thakur A, Gangopadhyay S, Maity KP. Effect of cutting speed and CVD multilayer coating on machinability of inconel 825. Surf. Eng. 2014;30(7):516–523. doi:10.1179/1743294414Y.0000000274.
  • Du J, Liu ZQ. Cutting force, cutting temperature and tool wear in end milling of powder metallurgy nickel-based superalloy FGH95. AMR. 2011;188:55–60. doi:10.4028/www.scientific.net/AMR.188.55.
  • Fusova L, Rokicki P, Spotz Z, et al. Tool wear mechanisms during machining of alloy 625. AMR. 2011;275:204–207. doi:10.4028/www.scientific.net/AMR.275.204.
  • Yang LD, Ku WL, Chow HM, et al. Mar-M247, haynes-230 AND inconel-718 study of machining characteristics for ni-based superalloys on friction drilling. AMR. 2012;459:632–637. doi:10.4028/www.scientific.net/AMR.459.632.
  • Zhu D, Wang W, Fang XL, et al. Electrochemical drilling of multiple holes with electrolyte-extraction. CIRP Ann. 2010;59(1):239–242. doi:10.1016/j.cirp.2010.03.135.
  • Zoya ZA, Krishnamurthy R. The performance of CBN tools in the machining of titanium alloys. J. Mater. Process. Technol. 2000;100(1-3):80–86. doi:10.1016/S0924-0136(99)00464-1.
  • Zhang H, Xu J, Wang J. Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining. Opt. Lasers Eng. 2009;47(11):1242–1249. doi:10.1016/j.optlaseng.2009.05.009.
  • Zhang S, Guo YB. An experimental and analytical analysis on chip morphology, phase transformation, oxidation, and their relationships in finish hard milling. Int. J. Mach. Tools Manuf. 2009;49(11):805–813. doi:10.1016/j.ijmachtools.2009.06.006.
  • Sun S, Brandt M, Dargusch MS. Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf. 2009;49(7-8):561–568. doi:10.1016/j.ijmachtools.2009.02.008.
  • Hua Z, Jiawen X. Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin. J. Aeronaut. 2010;23(4):454–460. doi:10.1016/S1000-9361(09)60241-7.
  • Uhlmann E, Von Der Schulenburg MG, Zettier R. Finite element modeling and cutting simulation of inconel 718. CIRP Ann. 2007;56(1):61–64. doi:10.1016/j.cirp.2007.05.017.
  • Zeng Z, Wang Y, Wang Z, et al. A study of micro-EDM AND micro-ECM combined milling for 3D metallic micro-structures. Precis. Eng. 2012;36(3):500–509. doi:10.1016/j.precisioneng.2012.01.005.
  • Sharman ARC, Hughes JI, Ridgway K. Surface integrity and tool life when turning inconel 718 using ultra-high pressure and flood coolant systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008;222(6):653–664. doi:10.1243/09544054JEM936.
  • Novovic D, Dewes RC, Aspinwall DK, et al. The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tools Manuf. 2004;44(2-3):125–134. doi:10.1016/j.ijmachtools.2003.10.018.
  • J. Sun and Y. B. Guo, A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V, J. Mater. Process. Technol., vol. 209, no. 8, pp. 4036–4042, 2009, doi:10.1016/j.jmatprotec.2008.09.022.
  • Sezer HK, Li L, Leigh S. Twin gas jet-assisted laser drilling through thermal barrier-coated nickel alloy substrates. Int. J. Mach. Tools Manuf. 2009;49(14):1126–1135. doi:10.1016/j.ijmachtools.2009.07.002.
  • Sharman A, Hughes JI, Ridgway K. An analysis of the residual stresses generated in inconel 718™ when turning. J. Mater. Process. Technol. 2006;173(3):359–367. doi:10.1016/j.jmatprotec.2005.12.007.
  • Tarng YS, Ma SC, Chung LK. Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manuf. 1995;35(12):1693–1701. doi:10.1016/0890-6955(95)00019-T.
  • Soo SL, Aspinwall DK, Dewes RC. 3D FE modelling of the cutting of inconel 718. J. Mater. Process. Technol. 2004;150(1-2):116–123. doi:10.1016/j.jmatprotec.2004.01.046.
  • Spedding TA, Wang ZQ. Parametric optimization and surface characterization of wire electrical discharge machining process. Precis. Eng. 1997;20(1):5–15. doi:10.1016/S0141-6359(97)00003-2.
  • Sadat, Surface region damage of machined inconel-718 nickel-base superalloy using natural and controlled contact length tools, Wear, vol. 119, no. 2, pp. 225–235, 1987, doi:10.1016/0043-1648(87)90112-8.
  • Sharma S, Jain VK, Shekhar R. Electrochemical drilling of inconel superalloy with acidified sodium chloride electrolyte. The International Journal of Advanced Manufacturing Technology. 2002;19(7):492–500. doi:10.1007/s001700200052.
  • Pawade RS, Joshi SS, Brahmankar PK. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned inconel 718. Int. J. Mach. Tools Manuf. 2008;48(1):15–28. doi:10.1016/j.ijmachtools.2007.08.004.
  • Tam SC, Yeo CY, Jana S, et al. Optimization of laser deep-hole drilling of inconel 718 using the taguchi method. J. Mater. Process. Technol. 1993;37(1-4):741–757. doi:10.1016/0924-0136(93)90133-Q.
  • Yeo CY, Tam SC, Jana S, et al. A technical review of the laser drilling of aerospace materials. J. Mater. Process. Technol. 1994;42(1):15–49. doi:10.1016/0924-0136(94)90073-6.
  • Kamalu J, Byrd P, Pitman A. Variable angle laser drilling of thermal barrier coated nimonic. J. Mater. Process. Technol. 2002;122(2-3):355–362. doi:10.1016/S0924-0136(02)00044-4.
  • Sezer HK, Li L, Schmidt M, et al. Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. Int. J. Mach. Tools Manuf. 2006;46(15):1972–1982. doi:10.1016/j.ijmachtools.2006.01.010.
  • Yilbas BS. Parametric study to improve laser hole drilling process. J. Mater. Process. Technol. 1997;70(1-3):264–273. doi:10.1016/S0924-0136(97)00076-9.
  • Corcoran A, Sexton L, Seaman B, et al. The laser drilling of multi-layer aerospace material systems. J. Mater. Process. Technol. 2002;123(1):100–106. doi:10.1016/S0924-0136(01)01123-2.
  • Low D, Li L, Byrd PJ. Spatter prevention during the laser drilling of selected aerospace materials. J. Mater. Process. Technol. 2003;139(1-3):71–76. doi:10.1016/S0924-0136(03)00184-5.
  • Ahn DG, Byun KW, Kang MC. Thermal characteristics in the cutting of inconel 718 superalloy using CW nd: YAG laser. Journal of Materials Science & Technology. 2010;26(4):362–366. doi:10.1016/S1005-0302(10)60059-X.
  • Okasha MM, Mativenga PT, Driver N, et al. Sequential laser and mechanical micro-drilling of ni superalloy for aerospace application. CIRP Ann. 2010;59(1):199–202. doi:10.1016/j.cirp.2010.03.011.
  • Bandyopadhyay S, Sarin Sundar JK, Sundararajan G, et al. Geometrical features and metallurgical characteristics of nd:YAG laser drilled holes in thick IN718 AND Ti–6Al–4V sheets. J. Mater. Process. Technol. 2002;127(1):83–95. doi:10.1016/S0924-0136(02)00270-4.
  • Thawari G, Sundar JS, Sundararajan G, et al. Influence of process parameters during pulsed nd:YAG laser cutting of nickel-base superalloys. J. Mater. Process. Technol. 2005;170(1-2):229–239. doi:10.1016/j.jmatprotec.2005.05.021.
  • Chen X, Ortiz AL, Staver PR, et al. Improved hole drilling using a high peak power nd:YAG laser at the second harmonic wavelength. Laser Appl. 1997;9(6):287–290. doi:10.2351/1.4745471.
  • Chen XL, Machining with high brightness lasers, in High-power laser ablation, pts 1-2, 1998, vol. 3343, pp. 840–846. doi: doi:10.1117/12.321612.
  • McNally CA, Folkes J, Pashby IR. Laser drilling of cooling holes in aeroengines: state of the art and future challenges. Mater. Sci. Technol. 2004;20(7):805–813. doi:10.1179/026708304225017391.
  • Feng Q, Picard YN, Liu H, et al. Femtosecond laser micromachining of a single-crystal superalloy. Scr. Mater. 2005;53(5):511–516. doi:10.1016/j.scriptamat.2005.05.006.
  • Feng Q, Picard YN, McDonald JP, et al. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings. Materials Science and Engineering: A. 2006;430(1-2):203–207. doi:10.1016/j.msea.2006.05.104.
  • Das DK, Pollock TM. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy. J. Mater. Process. Technol. 2009;209(15-16):5661–5668. doi:10.1016/j.jmatprotec.2009.05.031.
  • Rajesha S, Sharma AK, Kumar P. On electro discharge machining of inconel 718 WITH hollow tool. J of Materi Eng and Perform. 2012;21(6):882–891. doi:10.1007/s11665-011-9962-8.
  • Sen M, Shan HS. A review of electrochemical macro- TO micro-hole drilling processes. Int. J. Mach. Tools Manuf. 2005;45(2):137–152. doi:10.1016/j.ijmachtools.2004.08.005.
  • Bilgi DS, Jain VK, Shekhar R, et al. Electrochemical deep hole drilling in super alloy for turbine application. J. Mater. Process. Technol. 2004;149(1-3):445–452. doi:10.1016/j.jmatprotec.2003.09.008.
  • Burger M, Koll L, Werner EA, et al. Electrochemical machining characteristics and resulting surface quality of the nickel-base single-crystalline material LEK94. J. Manuf. Processes. 2012;14(1):62–70. doi:10.1016/j.jmapro.2011.08.001.
  • Zhang Y, Xu Z, Zhu D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution. Int. J. Mach. Tools Manuf. 2015;92:10–18. doi:10.1016/j.ijmachtools.2015.02.011.
  • Li ZY, Wei XT, Sun JJ, et al. Process capability and effect size of vacuum extraction shaped tube electrolytic drilling of inconel alloy for high-performance cooling hole. Int J Adv Manuf Technol. 2016;85(9-12):2557–2566. doi:10.1007/s00170-015-8085-z.
  • Hewidy MS, El-Taweel TA, El-Safty MF. Modelling the machining parameters of wire electrical discharge machining of inconel 601 using RSM. J. Mater. Process. Technol. 2005;169(2):328–336. doi:10.1016/j.jmatprotec.2005.04.078.
  • Kang SH, Kim DE. Effect of electrical discharge machining process on crack susceptibility of nickel based heat resistant alloy. Mater. Sci. Technol. 2005;21(7):817–823. doi:10.1179/174328405X36601.
  • Ramakrishnan R, Karunamoorthy L. Modeling and multi-response optimization of inconel 718 ON machining of CNC WEDM process. J. Mater. Process. Technol. 2008;207(1-3):343–349. doi:10.1016/j.jmatprotec.2008.06.040.
  • Kuppan P, Rajadurai A, Narayanan S. Influence of EDM process parameters in deep hole drilling of inconel 718. Int J Adv Manuf Technol. 2008;38(1-2):74–84. doi:10.1007/s00170-007-1084-y.
  • Kuppan P, Narayanan S, Rajadurai A. Experimental investigations into electrical discharge deep hole drilling of inconel 718 using copper-tungsten electrode. IJMMS. 2012;5(5/6):399 doi:10.1504/IJMMS.2012.049969.
  • Guo Y, Zhang G, Wang L, et al. Optimization of parameters for EDM drilling of thermal-barrier-coated nickel superalloys using gray relational analysis method. Int J Adv Manuf Technol. 2016;83(9-12):1595–1605. doi:10.1007/s00170-015-7685-y.
  • Aspinwall DK, Soo SL, Berrisford AE, et al. Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and inconel 718 using minimum damage generator technology. CIRP Ann. 2008;57(1):187–190. doi:10.1016/j.cirp.2008.03.054.
  • Newton TR, Melkote SN, Watkins TR, et al. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of inconel 718. Materials Science and Engineering: A. 2009;513-514:208–215. doi:10.1016/j.msea.2009.01.061.
  • Wang C-C, Chow H-M, Yang L-D, et al. Recast layer removal after electrical discharge machining via taguchi analysis: A feasibility study. J. Mater. Process. Technol. 2009;209(8):4134–4140. doi:10.1016/j.jmatprotec.2008.10.012.
  • J. Monaghan, D. Brazil, and C. Sheridan, The production of cavities in nickel based superalloys and metal matrix composites using electro-discharge machining, in FRONTIERS FOR ENGINEERING MATERIALS, 1996, vol. 118-, pp. 85–91.
  • Paul MA, Hodkinson NC, Aspinwall DK. Arc sawing of nickel based superalloys in aqueous electrolytes. J. Mater. Process. Technol. 1999;92-93:274–280. doi:10.1016/S0924-0136(99)00123-5.
  • Kumar A, Maheshwari S, Sharma C, et al. Analysis of machining characteristics in additive mixed electric discharge machining of nickel-based super alloy inconel 718. Mater. Manuf. Processes. 2011;26(8):1011–1018. doi:10.1080/10426914.2010.527415.
  • Mohanty A, Talla G, Gangopadhyay S. Experimental investigation and analysis of EDM characteristics of inconel 825. Mater. Manuf. Processes. 2014;29(5):540–549. doi:10.1080/10426914.2014.901536.
  • Singh S, Pandey A. Some studies into electrical discharge machining of Nimonic75 super alloy using rotary copper disk electrode. J of Materi Eng and Perform. 2013;22(5):1290–1303. doi:10.1007/s11665-012-0412-z.
  • S. Dhanabalan, K. Sivakumar, and C. Sathiya Narayanan, Optimization of machining parameters of EDM while machining inconel 718 for form tolerance and orientation tolerance, Indian J. Eng. Mater. Sci., vol. 20, no. 5, pp. 391–397, 2013, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887394493&partnerID=40&md5=7ff491d8ba938112a320b0eb7d92f13a
  • Dhanabalan S, Sivakumar K, Sathiya Narayanan C. Analysis of form tolerances in electrical discharge machining process for inconel 718 AND 625. Mater. Manuf. Processes. 2014;29(3):253–259. doi:10.1080/10426914.2013.852213.
  • Karunakaran K, Chandrasekaran M. Experimental investigation of process parameters influence on machining inconel 800 in the electrical spark eroding machine. IOP Conf Ser: Mater Sci Eng. 2016;157:012007 doi:10.1088/1757-899X/157/1/012007.
  • Li Y, Fu JJ, Yang LG. Experimental study on electro-discharge machining of nickel-based superalloy. KEM. 2016;723:51–55. doi:10.4028/www.scientific.net/KEM.723.51.
  • Xu H, Gu L, Chen J, et al. Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining. Int J Adv Manuf Technol. 2015;79(5-8):937–947. doi:10.1007/s00170-015-6891-y.
  • Shabgard M, Farzaneh S, Gholipoor A. Investigation of the surface integrity characteristics in wire electrical discharge machining of inconel 617. J Braz Soc Mech Sci Eng. 2017;39(3):857–864. doi:10.1007/s40430-016-0556-0.
  • Zhang Y, Xu Z, Zhu Y, et al. Machining of a film-cooling hole in a single-crystal superalloy by high-speed electrochemical discharge drilling. Chin. J. Aeronaut. 2016;29(2):560–570. doi:10.1016/j.cja.2015.06.021.
  • M. P. Garg, A. Kumar, and C. K. Sahu, Mathematical modeling and analysis of WEDM machining parameters of nickel based super alloy using response surface methodology, Sadhana - Acad. Proc. Eng. Sci., vol. AIP, pp. 1–53, 2017, doi:10.1007/s12046-017-0647-3.
  • Mandal A, Dixit AR, Das AK, et al. Modeling and optimization of machining nimonic C-263 superalloy using multicut strategy in WEDM. Mater. Manuf. Processes. 2016;31(7):860–868. doi:10.1080/10426914.2015.1048462.
  • Zhang Y, Xu Z, Xing J, et al. Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chin. J. Aeronaut. 2016;29(4):1103–1110. doi:10.1016/j.cja.2015.12.016.
  • Zhang Y, Xu Z, Zhu Y, et al. Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling. J. Mater. Process. Technol. 2016;231:38–49. doi:10.1016/j.jmatprotec.2015.12.012.
  • Zhang G, Guo Y, Wang L. Experimental study on the machining of inclined holes for thermal barrier-coated nickel superalloys by EDM. J of Materi Eng and Perform. 2016;25(10):4574–4580. doi:10.1007/s11665-016-2287-x.
  • P. Sharma, D. Chakradhar, and N. S., “Analysis and Optimization of WEDM Performance Characteristics of Inconel 706 for Aerospace Application,” Silicon, 2017, doi: doi:10.1007/s12633-017-9549-6.
  • Nain SS, Garg D, Kumar S. Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy udimet-L605. Engineering Science and Technology, an International Journal. 2017;20(1):247–264. doi:10.1016/j.jestch.2016.09.023.
  • Hou ZB, Komanduri R. Modeling of thermomechanical shear instability in machining. Int. J. Mech. Sci. 1997;39(11):1273–1314. doi:10.1016/S0020-7403(97)00017-9.
  • Lorentzon J, Järvstråt N. Modelling tool wear in cemented-carbide machining alloy 718. Int. J. Mach. Tools Manuf. 2008;48(10):1072–1080. doi:10.1016/j.ijmachtools.2008.03.001.
  • Díaz-Álvarez J, Cantero JL, Miguélez H, et al. Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of inconel 718. Int. J. Mech. Sci. 2014;82:161–169. doi:10.1016/j.ijmecsci.2014.03.010.
  • Sadat AB, Reddy MY, Wang BP. Plastic deformation analysis in machining of inconel-718 nickel-base superalloy using both experimental and numerical methods. Int. J. Mech. Sci. 1991;33(10):829–842. doi:10.1016/0020-7403(91)90005-N.
  • Mitrofanov AV, Babitsky VI, Silberschmidt VV. Finite element analysis of ultrasonically assisted turning of inconel 718. J. Mater. Process. Technol. 2004;153-154:233–239. doi:10.1016/j.jmatprotec.2004.04.299.
  • Ranganath S, Guo C, Hegde P. A finite element modeling approach to predicting white layer formation in nickel superalloys. CIRP Ann. 2009;58(1):77–80. doi:10.1016/j.cirp.2009.03.109.
  • Connolley T, Reed P, Starink MJ. Short crack initiation and growth at 600°C in notched specimens of Inconel718. Materials Science and Engineering: A. 2003;340(1-2):139–154. doi:10.1016/S0921-5093(02)00169-7.
  • Darwish SM. The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy. J. Mater. Process. Technol. 2000;97(1-3):10–18. doi:10.1016/S0924-0136(99)00365-9.
  • Guo YB, Li W, Jawahir IS. SURFACE INTEGRITY CHARACTERIZATION AND PREDICTION in MACHINING of HARDENED AND DIFFICULT-TO-MACHINE ALLOYS: A STATE-of-ART RESEARCH REVIEW AND ANALYSIS. Machining Science and Technology. 2009;13(4):437–470. doi:10.1080/10910340903454922.
  • Kortabarri A, Madariag A, Fernandez E, et al. A comparative study of residual stress profiles on inconel 718 induced by dry face turning. Procedia Eng. 2011;19:228–234. doi:10.1016/j.proeng.2011.11.105.
  • Outeiro JC, Pina JC, M'Saoubi R, et al. Analysis of residual stresses induced by dry turning of difficult-TO-machine materials. CIRP Ann. 2008;57(1):77–80. doi:10.1016/j.cirp.2008.03.076.
  • Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2008;48(3-4):275–288. doi:10.1016/j.ijmachtools.2007.10.014.
  • T. Özel, M. Sima, A. K. Srivastava, and B. Kaftanoglu, “Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations,” CIRP Ann. - Manuf. Technol., vol. 59, no. 1, pp. 77–82, 2010, doi:10.1016/j.cirp.2010.03.055.
  • Shao F, Zhang HY, Fan ZJ. Simulation of machining of incoloy 907 WITH thermodynamical constitutive equation. AMR. 2013;634-638:1790–1793. doi:10.4028/www.scientific.net/AMR.634-638.1790.
  • Hokka M, Gomon D, Shrot A, et al. Dynamic behavior and high speed machining of ti-6246 AND alloy 625 superalloys: Experimental and modeling approaches. Exp Mech. 2014;54(2):199–210. doi:10.1007/s11340-013-9793-7.
  • Richards N, Aspinwall D. Use of ceramic tools for machining nickel based alloys. Int. J. Mach. Tools Manuf. 1989;29(4):575–588. doi:10.1016/0890-6955(89)90072-2.
  • Tian Y, Shin YC. Thermal modeling for laser-assisted machining of silicon nitride ceramics with complex features. Journal of Manufacturing Science and Engineering. 2006;128(2):425–434. doi:10.1115/1.2162906.
  • Schulz H, Moriwaki T. High-speed machining. CIRP Ann. 1992;41(2):637–643. doi:10.1016/S0007-8506(07)63250-8.
  • Skvarenina S, Shin YC. Laser-assisted machining of compacted graphite iron. Int JMach Tools Manuf. 2006;46(1):7–17.
  • Novak JW, Shin YC, Incropera FP. Assessment of plasma enhanced machining forimproved machinability of Inconel 718. J Manuf Sci Eng. 1997;119(1):125.
  • Rozzi J. Transient, three-dimensional heat transfer model for the laser assistedmachining of silicon nitride: I. Comparison of predictions with measured surface temperaturehistories. Int J Heat Mass Transf. 2000;43(8):1409–1424.
  • Dewes R, Aspinwall D. A review of ultra high speed milling of hardened steels. JMater Process Technol. 1997;69:1–17.
  • Rozzi J, Pfefferkorn F, Shin Y. Experimental evaluation of the laser assisted machiningof silicon nitride ceramics. J Manuf Sci Eng. 2000;122(4):666.
  • Leshock CE, Kim JNJ-N, Shin YC. Plasma enhanced machining of Inconel 718: modelingof workpiece temperature with plasma heating and experimental results. Int JMach Tools Manuf. 2001;41(6):877–897.
  • Balazinski M, Songméné V, Kops L. Improvement of tool life through variable feed milling of inconel 600. CIRP Ann. 1995;44(1):55–58. doi:10.1016/S0007-8506(07)62274-4.
  • Chryssolouris G, Anifantis N, Karagiannis S. Laser assisted machining: An overview. Journal of Manufacturing Science and Engineering. 1997;119(4B):766–769. doi:10.1115/1.2836822.
  • Alauddin M, Mazid MA, El Baradi MA, et al. Cutting forces in the end milling of inconel 718. J. Mater. Process. Technol. 1998;77(1-3):153–159. doi:10.1016/S0924-0136(97)00412-3.
  • Pfefferkorn FE, Shin YC, Tian Y, et al. Laser-assisted machining of magnesia-partially-stabilized zirconia. Journal of Manufacturing Science and Engineering. 2004;126(1):42–51. doi:10.1115/1.1644542.
  • Alauddin M, El Baradie MA, Hashmi MSJ. End-milling machinability of inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 1996;210(1):11–23. doi:10.1243/PIME_PROC_1996_210_082_02.
  • Lei S, Shin YC, Incropera FP. Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. Journal of Manufacturing Science and Engineering. 2001;123(4):639–646. doi:10.1115/1.1380382.
  • Kuzucu V, Ceylan M, Çelik H, et al. Microstructure and phase analyses of stellite 6 PLUS 6 wt.% mo alloy. J. Mater. Process. Technol. 1997;69(1-3):257–263. doi:10.1016/S0924-0136(97)00027-7.
  • Ding H, Shin YC. Laser-assisted machining of hardened steel parts with surface integrity analysis. Int. J. Mach. Tools Manuf. 2010;50(1):106–114. doi:10.1016/j.ijmachtools.2009.09.001.
  • Aykut Ş, Demetgul M, Tansel IN. Selection of optimum cutting condition of cobalt-based superalloy with GONNS. Int J Adv Manuf Technol. 2010;46(9-12):957–967. doi:10.1007/s00170-009-2165-x.
  • Razak NH, Chen ZW, Pasang T. Progression of tool deterioration and related cutting force during milling of 718Plus superalloy using cemented tungsten carbide tools. Int J Adv Manuf Technol. 2016;86(9-12):3203–3216. doi:10.1007/s00170-016-8438-2.
  • Rodrigues MA, Hassui A, Lopes Da Silva RH, et al. Tool life and wear mechanisms during alloy 625 face milling. Int J Adv Manuf Technol. 2016;85(5-8):1439–1448. doi:10.1007/s00170-015-8056-4.
  • Ezugwu EO, Pashby IR. High speed milling of nickel-based superalloys. J. Mater. Process. Technol. 1992;33(4):429–437. doi:10.1016/0924-0136(92)90277-Y.
  • Liu G, He N, Man ZL, et al. Cutting forces in the milling of Inconel 718. Adv GrindAbras Process. 2004;259–2:824–828.
  • Bağcı E, Aykut Ş. The effects of tool position, coating and cutting parameters on forces, power, MRR AND wear in face milling of stellite 6. Arab J Sci Eng. 2014;39(11):8135–8146. doi:10.1007/s13369-014-1354-6.
  • Kasim MS, Che Haron CH, Ghani JA, et al. The influence of cutting parameter onheat generation in high-speed milling Inconel 718 under MQL condition. J Sci IndRes. 2014;73(1):62–65.
  • Li HZ, Wang J. A study of cutting forces in high-speed dry milling of inconel 718. AMR. 2012;500:105–110. doi:10.4028/www.scientific.net/AMR.500.105.
  • Krain HR, Sharman A, Ridgway K. Optimisation of tool life and productivity when end milling inconel 718TM. J. Mater. Process. Technol. 2007;189(1-3):153–161. doi:10.1016/j.jmatprotec.2007.01.017.
  • Kasim MS, Che Haron CH, Ghani JA, et al. Wear mechanism and notch wear location prediction model in ball nose end milling of inconel 718. Wear. 2013;302(1-2):1171–1179. doi:10.1016/j.wear.2012.12.040.
  • Lo’pez De Lacalle LN, Sa’nchez JA, Lamikiz A, et al. Plasma assisted milling of heat-resistant superalloys. Journal of Manufacturing Science and Engineering. 2004;126(2):274–285. doi:10.1115/1.1644548.
  • Axinte DA, Andrews P. Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in a nickel base superalloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2007;221(4):591–603. doi:10.1243/09544054JEM704.
  • Kwong J, Axinte DA, Withers PJ. The sensitivity of ni-based superalloy to hole making operations: Influence of process parameters on subsurface damage and residual stress. J. Mater. Process. Technol. 2009;209(8):3968–3977. doi:10.1016/j.jmatprotec.2008.09.014.
  • Kaulfersch F, Roeder M. Cutting of nickel-based superalloys with rotating indexable inserts. AMR. 2013;769:116–123. doi:10.4028/www.scientific.net/AMR.769.116.
  • Hood R, Soo SL, Aspinwall DK, et al. Radius end milling of haynes 282 nickel based superalloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2012;226(10):1745–1753. doi:10.1177/0954405412455886.
  • Wang B, Liu Z. Acoustic emission signal analysis during chip formation process in high speed machining of 7050-T7451 aluminum alloy and inconel 718 superalloy. J. Manuf. Processes. 2017;27:114–125. doi:10.1016/j.jmapro.2017.04.003.
  • Soo SL, Hood R, Aspinwall DK, et al. Machinability and surface integrity of RR1000 nickel based superalloy. CIRP Ann. 2011;60(1):89–92. doi:10.1016/j.cirp.2011.03.094.
  • Kadirgama K, Abou-El-Hossein KA, Noor MM, et al. Tool life and wear mechanism when machining hastelloy C-22HS. Wear. 2011;270(3-4):258–268. doi:10.1016/j.wear.2010.10.067.
  • Krämer A, Lung D, Klocke F. High performance cutting of aircraft and turbine components.AIP Conf Proc. 2012;1431:425–432.
  • Aykut Ş, Bagci E, Kentli A, et al. Experimental observation of tool wear, cutting forces and chip morphology in face milling of cobalt based super-alloy with physical vapour deposition coated and uncoated tool. Materials & Design. 2007;28(6):1880–1888. doi:10.1016/j.matdes.2006.04.014.
  • Kuo C, Su S, Chen S. Tool life and surface integrity when milling inconel 718 WITH coated cemented carbide tools. Journal of the Chinese Institute of Engineers. 2010;33(6):915–922. doi:10.1080/02533839.2010.9671680.
  • Jin D, Zhanqiang L, Chao T, et al. An experimental study of machinability of FGH95in end milling with coated carbide tools. Fourth International Seminar on ModernCutting and Measurement Engineering; 2011. p. 7997.
  • Kadirgama K, Noor MM, Abou-El-Hossein KA, et al. Aspects of wear mechanisms of carbide tools when machine hastelloy C-22HS. AMR. 2009;83-86:295–302. doi:10.4028/www.scientific.net/AMR.83-86.295.
  • Al-Falahi M, Baharudin BT, Hong TS, et al. Surface defects in groove milling of hastelloy-C276 UNDER fluid coolant. Mater. Manuf. Processes. 2016;31(13):1724–1732. doi:10.1080/10426914.2015.1103854.
  • Yıldırım ÇV, Kıvak T, Sarıkaya M, and Erzincanlı F, Determination of MQL parameters contributingto sustainable machining in the milling of nickel-base superalloy Waspaloy. ArabJ Sci Eng. 2017;42:4667–4681.
  • Wang F, Li L, Liu J, et al. Research on tool wear of milling nickel-based superalloy incryogenic. Int J Adv Manuf Technol. 2017;91:1–10.
  • Kursuncu B, Caliskan H, Guven SY, et al. Wear behavior of multilayer nanocomposite tialsin/tisin/tialn coated carbide cutting tool during face milling of inconel 718 superalloy. JNanoR. 2017;47:11–16. doi:10.4028/www.scientific.net/JNanoR.47.11.
  • Germain G, Lebrun JL, Braham-Bouchnak T, et al. Laser-assisted machining of inconel 718 WITH carbide and ceramic inserts. Int J Mater Form. 2008;1(S1):523–526. doi:10.1007/s12289-008-0213-y.
  • Melkote S, Kumar M, Hashimoto F, et al. Laser assisted micro-milling of hard-TO-machine materials. CIRP Ann. 2009;58(1):45–48. doi:10.1016/j.cirp.2009.03.053.
  • Attia H, Tavakoli S, Vargas R, et al. Laser-assisted high-speed finish turning of superalloy inconel 718 UNDER dry conditions. CIRP Ann. 2010;59(1):83–88. doi:10.1016/j.cirp.2010.03.093.
  • Kong X, Yang L, Zhang H, et al. Cutting performance and coated tool wear mechanisms in laser-assisted milling K24 nickel-based superalloy. Int J Adv Manuf Technol. 2015;77(9-12):2151–2163. doi:10.1007/s00170-014-6606-9.
  • Kim T-W, Lee C-M. Determination of the machining parameters of nickel-based alloys by high-power diode laser. Int J Precis Eng Manuf. 2015;16(2):309–314. doi:10.1007/s12541-015-0041-1.
  • Venkatesan K, Ramanujam R. Improvement of machinability using laser-aided hybrid machining for inconel 718 alloy. Mater. Manuf. Processes. 2016;31(14):1825–1835. doi:10.1080/10426914.2015.1117626.
  • Venkatesan K, Ramanujam R, Kuppan P. Parametric modeling and optimization of laser scanning parameters during laser assisted machining of inconel 718. Opt. Laser Technol. 2016;78:10–18. doi:10.1016/j.optlastec.2015.09.021.
  • Azhdari Tadavani S, Shoja Razavi R, Vafaei R. Pulsed laser-assisted machining of inconel 718 superalloy. Opt. Laser Technol. 2017;87:72–78. doi:10.1016/j.optlastec.2016.07.020.
  • Tso P-L. Study on the grinding of inconel 718. J. Mater. Process. Technol. 1995;55(3-4):421–426. doi:10.1016/0924-0136(95)02026-8.
  • Ghosh S, Chattopadhyay AB, Paul S. Modelling of specific energy requirement during high-efficiency deep grinding. Int. J. Mach. Tools Manuf. 2008;48(11):1242–1253. doi:10.1016/j.ijmachtools.2008.03.008.
  • Aspinwall DK, Soo SL, Curtis DT, et al. Profiled superabrasive grinding wheels for the machining of a nickel based superalloy. CIRP Ann. 2007;56(1):335–338. doi:10.1016/j.cirp.2007.05.077.
  • Wenfeng D, Jiuhua X, Zhenzhen C, et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chin. J. Aeronaut. 2010;23(4):501–510. doi:10.1016/S1000-9361(09)60247-8.
  • Österle W, Li PX. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Materials Science and Engineering: A. 1997;238(2):357–366. doi:10.1016/S0921-5093(97)00457-7.
  • Ezugwu EO, Burrell P, Nelson AS. A novel case-based reasoning system for selectinggrinding parameters for superalloys. Adv Manuf Technol XVI. 2001;5:367–372.
  • Aspinwall DK, Dewes RC, Burrows JM, et al. Hybrid high speed machining (HSM): System design and experimental results for grinding/hsm and EDM/HSM. CIRP Ann. 2001;50(1):145–148. doi:10.1016/S0007-8506(07)62091-5.
  • Abdullah A, Farhadi A, Pak A. Ultrasonic-assisted dry creep-feed up-grinding of superalloy Inconel738LC. Exp Mech. 2012;52(7):843–853. doi:10.1007/s11340-011-9557-1.
  • Sinha MK, Setti D, Ghosh S, et al. An investigation on surface burn during grindingof Inconel 718. J Manuf Process. 2016;21:124–133.
  • Unune DR, Marani Barzani M, Mohite SS, et al. Fuzzy logic-based model for predictingmaterial removal rate and average surface roughness of machined Nimonic 80Ausing abrasive-mixed electro-discharge diamond surface grinding. Neural ComputAppl. 2016;29:1–16.
  • Zhi G, Li X, Qian Z, et al. Experimental study of time-dependent performance in superalloy high-speed grinding with cbn wheels. Machining Science and Technology. 2016;20(4):615–633. doi:10.1080/10910344.2016.1224018.
  • Sun S, Brandt M, Dargusch MS. Thermally enhanced machining of hard-TO-machine materials—a review. Int. J. Mach. Tools Manuf. 2010;50(8):663–680. doi:10.1016/j.ijmachtools.2010.04.008.
  • Zhan H, Zhao W, Wang G. Manufacturing turbine blisks. Aircr Eng Aerosp Technol.2011;72(3):247–252.
  • Zhu Z, Dhokia VG, Nassehi A, et al. A review of hybrid manufacturing processes – state of the art and future perspectives. Int. J. Comput. Integr. Manuf. 2013;26(7):596–615. doi:10.1080/0951192X.2012.749530.
  • Pervaiz S, Rashid A, Deiab I, et al. Influence of tool materials on machinability of titanium- AND nickel-based alloys: A review. Mater. Manuf. Processes. 2014;29(3):219–252. doi:10.1080/10426914.2014.880460.
  • Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: A review. J. Cleaner Prod. 2014;83:33–47. doi:10.1016/j.jclepro.2014.07.071.
  • Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining ofnickel-based super alloys. Int J Mach Tools Manuf. 2015;49(6):435–453.
  • Li ZY, Wei XT, Guo YB, et al. State-of-art, challenges, and outlook on manufacturing of cooling holes for turbine blades. Machining Science and Technology. 2015;19(3):361–399. doi:10.1080/10910344.2015.1051543.
  • M’Saoubi R, Axinte D, Soo SL, et al. High performance cutting of advanced aerospacealloys and composite materials. CIRP Ann Manuf Technol. 2015;64(2):557–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.