142
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Development of AA5052/TiO2/SiC hybrid surface composites using upward material flow through multipass friction stir processing

ORCID Icon &
Pages 3335-3357 | Received 13 Jan 2023, Accepted 11 Apr 2023, Published online: 23 Apr 2023

References

  • Nelaturu P, Jana S, Mishra RS, et al. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy. Mater Sci Eng A. 2018;716:165–178.
  • Reddy KV, Naik RB, Reddy GM, et al. Damping property of AA6061/SiCp surface composites developed through friction stir processing. J Mater Eng Perform. 2022;31(1):75–81.
  • Samal P, Vundavilli PR, Meher A, et al. Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process. 2020;59:131–152.
  • Sadeghi B, Cavaliere P, Pruncu CI, et al. Architectural design of advanced aluminum matrix composites: a review of recent developments. Crit Rev Solid State Mater Sci. 2022;0:1–71.
  • Ramanathan A, Krishnan PK, Muraliraja R. A review on the production of metal matrix composites through stir casting–furnace design, properties, challenges, and research opportunities. J Manuf Process. 2019;42:213–245.
  • Suthar J, Patel KM. Processing issues, machining, and applications of aluminum metal matrix composites. Mater Manuf Process. 2018;33(5):499–527.
  • Orłowska M, Pixner F, Hütter A, et al. Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processing. J Manuf Process. 2022;80:359–373.
  • Butola R, Pandit D, Pratap C, et al. Two decades of friction stir processing–a review of advancements in composite fabrication. J Adhes Sci Technol. 2022;36(8):795–832.
  • Ahmed MMZ, El-Sayed Seleman MM, Eid RG, et al. Production of AA1050/silica fume composite by bobbin tool-friction stir processing: microstructure, composition and mechanical properties. CIRP J Manuf Sci Technol. 2022;38:801–812.
  • Inácio PL, Nogueira F, Ferreira FB, et al. Functionalized material production via multi-stack upward friction stir processing (UFSP). Mater Manuf Process. 2022;37(1):11–24.
  • Gopi S, Mohan DG. Evaluating the welding pulses of various tool profiles in Single-Pass friction stir welding of 6082-T6 aluminium alloy. J Weld Join. 2021;39(3):284–294.
  • Fuse K, Badheka V, Patel V, et al. Dual sided composite formation in Al 6061/B4C using novel bobbin tool friction stir processing. J Mater Res Technol. 2021;13:1709–1721.
  • Anwar J, Khan M, Farooq MU, et al. Effect of B4C and CNTs’ nanoparticle reinforcement on the mechanical and corrosion properties in rolled Al 5083 friction stir welds. Can Metall Q. 2023;62(1):1–10.
  • Reihanian M, Bavi MA, Ranjbar K. CNT-reinforced Al-xZr (x = 0.25, 0.5 and 1 wt.%) surface composites fabricated by friction stir processing: microstructural, mechanical and wear characterisation. Philos Mag. 2022;102(11):1011–1041.
  • Luo J, Liu S, Paidar M, et al. Enhanced mechanical and tribological properties of AA6061/CeO2 composite fabricated by friction stir processing. Mater Lett. 2022;318:132210.
  • Sarvaiya J, Singh D. Influence of hybrid pin profile on enhancing microstructure and mechanical properties of AA5052/SiC surface composites fabricated via friction stir processing. Can Metall Q. 2022;1–14. doi: 10.1080/00084433.2022.2114124
  • Jamali A, Mirsalehi SE. Production of AA7075/ZrO2 nanocomposite using friction stir processing: metallurgical structure, mechanical properties and wear behavior. CIRP J Manuf Sci Technol. 2022;37:55–69.
  • Kumar Patel S, Pratap Singh V, Kumar D, et al. Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nanoparticle through friction stir processing. Mater Sci Eng B. 2022;276:115476.
  • Mosallaee M, Daneshgar A. Evaluation of microstructure and tribological behavior of FS-processed Al/SiC-BNh hybrid composite on the Al-1050 substrate. Mater Today Commun. 2022;31:103304.
  • Suganeswaran K, Parameshwaran R, Mohanraj T, et al. Influence of secondary phase particles Al2O3/SiC on the microstructure and tribological characteristics of AA7075-based surface hybrid composites tailored using friction stir processing. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021;235(1):161–178.
  • Gupta MK. Effects of tool pin profile and feed rate on wear performance of pine leaf ash/Al composite prepared by friction stir processing. J Adhes Sci Technol. 2021;35(3):256–268.
  • Olhan S, Khatkar V, Behera BK. Impact behavior of long glass fibre reinforced aluminum metal matrix composite prepared by friction stir processing technique for automotive. J Compos Mater. 2022;56(14):2157–2167.
  • Ayvaz SI, Arslan D, Ayvaz M. Investigation of mechanical and tribological behavior of SiC and B4C reinforced Al-Zn-Mg-Si-Cu alloy matrix surface composites fabricated via friction stir processing. Mater Today Commun. 2022;31:103419.
  • Mehdi H, Mishra RS. Modification of microstructure and mechanical properties of AA6082/ZrB2 processed by multipass friction stir processing. J. of Materi Eng and Perform. 2023;32(1):285–295.
  • Mehta KM, Badheka VJ. Effect of friction stir processing passes on wear properties of Al-6061-T6 alloy. J Braz. Soc. Mech. Sci. Eng. 2021;43(4):1–10.
  • Rana H, Badheka V. Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite. J Mater Process Technol. 2018;255:795–807.
  • Al-Ghamdi KA, Hussain G, Hashemi R. Fabrication of metal-matrix AL7075T651/TiN nano composite employing friction stir process. Proc Inst Mech Eng Part B J Eng Manuf. 2017;231(8):1319–1331.
  • Esmaily H, Habibolahzade A, Tajally M. Parametric investigation of Al5456/BNi-2 composite properties fabricated by friction stir processing. J Alloys Compd. 2017;725:1044–1054.
  • Dolatkhah A, Golbabaei P, Besharati Givi MK, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458–464.
  • Sasikumar A, Gopi S, Mohan DG. Prediction of filler added friction stir welding parameters for improving corrosion resistance of dissimilar aluminium alloys 5052 and 6082 joints. Adv Mater Sci. 2022;22(3):79–95.
  • Mohan DG, Tomków J, Gopi S. Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Adv Mater Sci. 2021;21(3):17–30.
  • Sasikumar A, Gopi S, Mohan DG. Forecasting process parameters on weld nugget hardness of filler added friction stir welded dissimilar aluminium alloys 5052 and 6082 joints. J Mech Energy Eng. 2021;5(2):103–112.
  • Sasikumar A, Gopi S, G Mohan D. Effect of welding speed on mechanical properties and corrosion resistance rates of filler induced friction stir welded AA6082 and AA5052 joints. Mater. Res. Express. 2021;8(6):066531.
  • Gaurav S, Mishra R, Zunaid M. Enhancement of microstructure and mechanical properties of similar and dissimilar aluminium alloy by friction stir welding/processing using nanoparticles: a review. J Adhes Sci Technol. 2023;0:1–42.
  • Mehdi H, Mishra RS. Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. J Adhes Sci Technol. 2022;36(12):1279–1298.
  • Kandasamy S, Rathinasamy P, Nagarajan N, et al. Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by taguchi optimization approach. J Adhes Sci Technol. 2022;36(6):584–605.
  • Uday KN, Rajamurugan G. Influence of process parameters and its effects on friction stir welding of dissimilar aluminium alloy and its composites–a review. J Adhes Sci Technol. 2023;37(5):767–800.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.
  • Sasikumar A, Gopi S, Mohan DG. Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Mater. Res. Express. 2019;6(8):086580.
  • Moustafa EB. Hybridization effect of BN and Al2O3 nanoparticles on the physical, wear, and electrical properties of aluminum AA1060 nanocomposites. Appl. Phys. A. 2021;127(9):724.
  • Kumar K, Kailas SV. The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A. 2008;485(1-2):367–374.
  • Wang X, Lados DA. Friction stir welding of similar aluminum alloys thick plates: understanding the material flow, microstructure evolution, defect formation, and mechanical properties. Materialia. 2022;24:101508.
  • Sivanesh PM, Elaya PA, Arulvel S. Development of multi-pass processed AA6082/SiCp surface composite using friction stir processing and its mechanical and tribology characterization. Surf Coat Technol. 2020;394:125900.
  • Paidar M, Ojo OO, Ezatpour HR, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B 4 C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159–169.
  • Sharifitabar M, Kashefi M, Khorshahian S. Effect of friction stir processing pass sequence on properties of Mg-ZrSiO4-Al2O3 surface hybrid micro/nano-composites. Mater Des. 2016;108:1–7.
  • Khodabakhshi F, Gerlich AP, Švec P. Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng A. 2017;698:313–325.
  • Mehrian SSM, Rahsepar M, Khodabakhshi F, et al. Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy. Surf Coatings Technol. 2021;405:126647.
  • Kar A, Suwas S, Kailas SV. Multi-Length scale characterization of microstructure evolution and its consequence on mechanical properties in dissimilar friction stir welding of titanium to aluminum. Metall Mat Trans A. 2019;50(11):5153–5173.
  • McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater. 2008;58(5):349–354.
  • Su JQ, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405(1-2):277–286.
  • Girish G, Anandakrishnan V. Influence of heat treatment on the microstructure, mechanical and tribological performances of particle reinforced aluminum matrix surface composite fabricated through friction stir processing. Part Sci Technol. 2022;0:1–16.
  • Jain VKS, Yazar KU, Muthukumaran S. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J Alloys Compd. 2019;798:82–92.
  • Sato YS, Urata M, Kokawa H, et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A. 2003;354(1-2):298–305.
  • Khodabakhshi F, Arab SM, Švec P, et al. Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater Charact. 2017;132:92–107.
  • Darzi Bourkhani R, Eivani AR, Nateghi HR, et al. Effects of pin diameter and number of cycles on microstructure and tensile properties of friction stir fabricated AA1050-Al2O3 nanocomposite. J Mater Res Technol. 2020;9(3):4506–4517.
  • Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981–988.
  • Mazaheri Y, Karimzadeh F, Enayati MH. Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing. Metall Mat Trans A. 2014;45(4):2250–2259.
  • Karpasand F, Ardestani M, Abbasi A. The effect of powder addition manner and volume fraction of reinforcement on tribological behavior of Al7075/B 4 C surface composite produced by friction stir processing. J Compos Mater. 2020;54(21):2873–2886.
  • Saini N, Pandey C, Thapliyal S, et al. Mechanical properties and wear behavior of Zn and MoS2 reinforced surface composite Al- Si alloys using friction stir processing. Silicon 2018;10(5):1979–1990.
  • Mazaheri Y, Jalilvand MM, Heidarpour A, et al. Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing. Tribol Int. 2020;143:106062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.