100
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of process parameters for preparing the hydrophobic surface of aluminum alloy by laser-assisted electrochemical composite etching based on response surface method

, , , , , , & show all
Pages 1438-1455 | Received 07 Apr 2023, Accepted 04 Sep 2023, Published online: 12 Sep 2023

References

  • Du B, Zhao Y, Bai Y. Preparation of PDMS/EEC/SiO2 composite super-hydrophobic coatings with excellent anti-guano adhesion performance. J Adhes Sci Technol. 2019; 33(17):1882–1894. doi:10.1080/01694243.2019.1620672.
  • Xiao YH, Zheng J, Liu RH, et al. Research progress in contact angle hysteresis on rough surface. Hot Working Technology. 2019;48(10):15–20. doi:10.14158/j.cnki.1001-3814.2019.10.004.
  • Zhao Y, Wang J, Zhou J, et al. Research progress of self-cleaning technology of cement-based superhydrophobic materials. Materials Reports. 2023;37(06):91–107. doi:10.11896/cldb.21100243.
  • Heikenfeld J, Dhindsa M. Electrowetting on superhydrophobic surfaces: present status and prospects. J Adhes Sci Technol. 2008;22(3-4):319–334. doi:10.1163/156856108X295347.
  • Bittoun E, Marmur A. Optimizing Super-Hydrophobic surfaces: criteria for comparison of surface topographies. J Adhes Sci Technol. 2009; 23(3):401–411. doi:10.1163/156856108X369958.
  • Kim SH. Fabrication of superhydrophobic surfaces. J Adhes Sci Technol. 2008; 22(3-4):235–250. doi:10.1163/156856108X305156.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936; 28(8):988–994. doi:10.1021/ie50320a024.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40(0):546–551. doi:10.1039/tf9444000546.
  • Xiao YH, Zheng J, He YM, et al. Contact angle hysteresis with different wetting-liquids on rough surfaces. China Surface Engineering. 2019;32(06):150–156. doi:10.11933/j.issn.1007-9289.20190216001.
  • Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Current Opinion in Colloid & Interface Science. 2009; 14(4):270–280. doi:10.1016/j.cocis.2009.05.004.
  • Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir. 2003; 19(4):1249–1253. doi:10.1021/la026612+.
  • Whyman G, Bormashenko E. Wetting transitions on rough substrates: general considerations. J Adhes Sci Technol. 2012; 26(1-3):207–220. doi:10.1163/016942411X574844.
  • Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir. 2003; 19(20):8343–8348. doi:10.1021/la0344682.
  • Patankar NA. Transition between superhydrophobic states on rough surfaces. Langmuir. 2004; 20(17):7097–7102. doi:10.1021/la049329e.
  • Barbieri L, Wagner E, Hoffmann P. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Langmuir. 2007; 23(4):1723–1734. doi:10.1021/la0617964.
  • Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011; 169(2):80–105. doi:10.1016/j.cis.2011.08.005.
  • Carreño F, Gude MR, Calvo S, et al. Synthesis and characterization of superhydrophobic surfaces prepared from silica and alumina nanoparticles on a polyurethane polymer matrix. Prog Org Coat. 2019;135:205–212. doi:10.1016/j.porgcoat.2019.05.036.
  • Wang P, Han H, Li J, et al. A facile cost-effective method for preparing poinsettia-inspired superhydrophobic ZnO nanoplate surface on Al substrate with corrosion resistance. Appl Phys A. 2016; 122(2):53. doi:10.1007/s00339-016-9608-7.
  • Wu S, Wu R, Jiang H, et al. Preparation and characterization of superhydrophobic silane-based multilayer surface coatings on aluminum surface. J of Materi Eng and Perform. 2022; 31(5):3611–3620. doi:10.1007/s11665-021-06530-5.
  • Liu Y, Xue J, Luo D, et al. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition. J Colloid Interface Sci. 2017; 491:313–320. doi:10.1016/j.jcis.2016.12.022.
  • Su F, Yao K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl Mater Interfaces. 2014; 6(11):8762–8770. doi:10.1021/am501539b.
  • Tan J, Hao J, An Z, et al. Simple fabrication of superhydrophobic nickel surface on steel substrate via electrodeposition. Int J Electrochem Sci. 2017; 12(1):40–49. doi:10.20964/2017.01.15.
  • Zhao Q, Tang T, Wang F. Fabrication of superhydrophobic AA5052 aluminum alloy surface with improved corrosion resistance and self cleaning property. Coatings. 2018;8(11):390. doi:10.3390/coatings8110390.
  • Guo J. Study on superhydrophilic/hydrophobic Surface Preparation of aluminum plate by nanosecond laser [MA. Eng dissertation]: Tianjin University of Science & Technology; 2020.
  • Jiang L, Wang A-D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl. 2018; 7(2):17134–17134. doi:10.1038/lsa.2017.134.
  • Yong J, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces. Soft Matter. 2015;11(46):8897–8906. doi:10.1039/C5SM02153G.
  • Bai X, Chen F. Recent advances in femtosecond Laser-Induced superhydrophobic surfaces. Acta Optica Sinica. 2021;41(01):218–231.
  • Xu W. Composite preparation and properties of superhydrophobic microstructured surface of aluminum alloy [MA. Eng dissertation]: Jiangsu University of Technology; 2020.
  • Tu T, Guo H, Liu Q, et al. Response surface method optimization of mixed acid leaching parameters for scheelite concentrate. Mining Metal Explo. 2021; 38(6):2537–2546. doi:10.1007/s42461-021-00484-x.
  • J X, Li GH, N XY, et al. Force of high speed lnternal cooling milling AlS1304 stainless steel based on response surface methodology. Aerospace Mat Technol. 2020;50(03):28–32. doi:10.12044/j.issn.1007-2330.2020.03.005.
  • Yu B, Zhan D, Liu J, et al. Response surface method optimization to improve copper extraction from refractory copper oxide ore. Mining Metall Explo. 2022; 39(5):2221–2228. doi:10.1007/s42461-022-00670-5.
  • Fu Y, Zhang H, Jiang G, et al. Research on process parameters of hydrophobic surface preparation of aluminum alloy by laser etching based on response surface method. Applied Laser. 2022;42(12):89–97. doi:10.14128/j.cnki.al.20224212.089.
  • Abraham M, Claudio DV, Stefano S, et al. Contact angles and wettability: towards common and accurate terminology. Surf Innovations. 2017;5(1):3–8. doi:10.1680/jsuin.17.00002.
  • Jeong S-W, Bolortuya S, Eadi SB, et al. Fabrication of superhydrophobic surfaces based on PDMS coated hydrothermal grown ZnO on PET fabrics. J Adhes Sci Technol. 2020; 34(1):102–113. doi:10.1080/01694243.2019.1661609.
  • Azizi D, Shafaei SZ, Noaparast M, et al. Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and Central composite rotatable design. Trans Nonferrous Met Soc China. 2012; 22(9):2295–2305. doi:10.1016/S1003-6326(11)61463-5.
  • Chen Z, Li C, Han X, et al. Sensitivity analysis of the MIG welding process parameters based on response surface method. J Adhes Sci Technol. 2021; 35(6):590–609. doi:10.1080/01694243.2020.1816778.
  • Boulifi NE, Aracil J, Martínez M. Lipase-catalyzed synthesis of isosorbide monoricinoleate: process optimization by response surface methodology. Bioresour Technol. 2010; 101(22):8520–8525. doi:10.1016/j.biortech.2010.06.094.
  • Liao XL, Liu RT, Geng CJ, et al. Process optimization and hydrophobicity of electrospun PVDF. Film Based Resp Surface Anal Engin Plastics Appn. 2018;46(12):71–78. doi:10.3969/j.issn.1001-3539.2018.12.014.
  • Zuo Y, Li P, Tu R, et al. Optimizing the process conditions for preparing dialdehyde starch with high aldehyde content by acidolysis oxidation based on response surface methodology. Cailiao Daobao/Materials Review. 2019;33:335–341. doi:10.11896/cldb.201902025.
  • Song H, Dan J, Li J, et al. Experimental study on the cutting force during laser-assisted machining of fused silica based on the Taguchi method and response surface methodology. J Manuf Processes. 2019; 38:9–20. doi:10.1016/j.jmapro.2018.12.038.
  • Yang L, Wang J, Sun X, et al. Multi-objective optimization design of spiral demister with punched holes by combining response surface method and genetic algorithm. Powder Technol. 2019;355:106–118. doi:10.1016/j.powtec.2019.07.030.
  • Yan H, Peng WJ, Wang ZX, et al. Reductive leaching technology of manganese anode slag optimized by response surface methodology. Zhongguo Youse Jinshu Xuebao/Chinese J Nonferrous Metals. 2013;23:528–534. doi:10.19476/j.ysxb.1004.0609.2013.02.032.
  • Yao F-h, Guan S-h, Yang H, et al. Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm. Water Sci Eng. 2019; 12(3):196–204. doi:10.1016/j.wse.2019.09.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.