260
Views
4
CrossRef citations to date
0
Altmetric
Review Article

How does rheological behaviour affect the interlayer-bonding strength of 3DPC mixtures?

ORCID Icon & ORCID Icon
Pages 1353-1377 | Received 07 May 2023, Accepted 28 Sep 2023, Published online: 08 Oct 2023

References

  • De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete – technical, economic and environmental potentials. Cem Concr Res. 2018;112:25–36. doi:10.1016/j.cemconres.2018.06.001.
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012.
  • Buswell RA, Soar RC, Gibb AG, et al. Freeform construction: mega-scale rapid manufacturing for construction. Autom Constr. 2007;16(2):224–231. doi:10.1016/j.autcon.2006.05.002.
  • Albar A, Chougan M, Al-Kheetan MJ, et al. Effective extrusion-based 3D printing system design for cementitious-based materials. Results Eng. 2020;6:100135. doi:10.1016/j.rineng.2020.100135.
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647. doi:10.1016/j.conbuildmat.2017.04.015.
  • Maier AK, Dezmirean L, Will J, et al. Three-dimensional printing of flash-setting calcium aluminate cement. J Mater Sci. 2011;46(9):2947–2954. doi:10.1007/s10853-010-5170-4.
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art, challenges and opportunities. Autom Constr. 2016;72:347–366. doi:10.1016/j.autcon.2016.08.026.
  • Agustí-Juan I, Müller F, Hack N, et al. Potential benefits of digital fabrication for complex structures: environmental assessment of a robotically fabricated concrete wall. J Cleaner Prod. 2017;154:330–340. doi:10.1016/j.jclepro.2017.04.002.
  • Şahin HG, Mardani-Aghabaglou A. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review. Constr Build Mater. 2022;316:125865. doi:10.1016/j.conbuildmat.2021.125865.
  • Şahin H, Mardanı Aghabaglou ALİ. Sustainable 3D printing concrete mixtures, literature review. J Modern Technol Eng. 2022;7:20–29.
  • Şahin hG, Mardani A. Çimento c3a içeriğinin 3b beton karışımlarının bazı Taze HAL Özellikleri Ve Basınç Dayanımına Etkisi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. n.d.;27(2):831–846.
  • Şahin H, Biricik ZNUR, Mardanı Aghabaglou ALİ. 2021. The enhancement methods of polycarboxylate-based water reducing admixture performance in systems containing high amount of clay literature review.
  • Şahin HG, Biricik Ö, Mardani-Aghabaglou A. Polycarboxylate-based water reducing admixture–clay compatibility; literature review. J Polym Res. 2022;29(1):1–19. doi:10.1007/s10965-021-02884-5.
  • Şahin HG, Mardani A, Özen S, et al. Utilization of high-range water reducing admixture having air-entraining agents in cementitious systems. J Build Eng. 2023;64:105565. doi:10.1016/j.jobe.2022.105565.
  • Khan MS, Sanchez F, Zhou H. 3-D printing of concrete: beyond horizons. Cem Concr Res. 2020;133:106070. doi:10.1016/j.cemconres.2020.106070.
  • Papachristoforou M, Mitsopoulos V, Stefanidou M. Evaluation of workability parameters in 3D printing concrete. Procedia Struct Integrity. 2018;10:155–162. doi:10.1016/j.prostr.2018.09.023.
  • Zhang C, Hou Z, Chen C, et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cem Concr Compos. 2019;104:103406. doi:10.1016/j.cemconcomp.2019.103406.
  • Panda B, Paul SC, Mohamed NAN, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement. 2018;113:108–116. doi:10.1016/j.measurement.2017.08.051.
  • Liu H, Xiao J, Ding T. Flexural performance of 3D-printed composite beams with ECC and recycled fine aggregate concrete: experimental and numerical analysis. Eng Struct. 2023;283:115865. doi:10.1016/j.engstruct.2023.115865.
  • Zhang Y, Zhang Y, She W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater. 2019;201:278–285. doi:10.1016/j.conbuildmat.2018.12.061.
  • Paul SC, Tay YWD, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civil Mech Eng. 2018;18(1):311–319. doi:10.1016/j.acme.2017.02.008.
  • Panda B, Paul SC, Tan MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–149. doi:10.1016/j.matlet.2017.07.123.
  • Buswell RA, De Silva WL, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018;112:37–49. doi:10.1016/j.cemconres.2018.05.006.
  • Rehman AU, Kim JH. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021;14(14):3800. doi:10.3390/ma14143800.
  • Kruger J, van Zijl G. A compendious review on lack-of-fusion in digital concrete fabrication. Addit Manuf. 2021;37:101654. doi:10.1016/j.addma.2020.101654.
  • Cicione A, Kruger J, Walls RS, et al. An experimental study of the behavior of 3D printed concrete at elevated temperatures. Fire Saf J. 2021;120:103075. doi:10.1016/j.firesaf.2020.103075.
  • Van Der Putten J, Deprez M, Cnudde V, et al. Microstructural characterization of 3D printed cementitious materials. Materials. 2019;12(18):2993. doi:10.3390/ma12182993.
  • Carrara P, Kruse R, Bentz DP, et al. Improved mesoscale segmentation of concrete from 3D X-ray images using contrast enhancers. Cem Concr Compos. 2018;93:30–42. doi:10.1016/j.cemconcomp.2018.06.014.
  • Mardani-Aghabaglou A, Ramyar K. Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method. Constr Build Mater. 2013;38:356–364. doi:10.1016/j.conbuildmat.2012.07.109.
  • Nematzadeh, A., Geven, E., Süleyman, Ö. Z. E. N., Ilhan, M., & AGHABAGLOU, A. M. (2019). Effect of different permeability reducing admixture on flowability performance of different type of mineral admixture-containing mortar mixtures. Sigma Journal of Engineering and Natural Sciences, 37(2), 625-640.
  • Mardani-Aghabaglou A, Andiç-Çakir Ö, Ramyar K. Freeze–thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cem Concr Compos. 2013;37:259–266. doi:10.1016/j.cemconcomp.2013.01.009.
  • Mardani-Aghabaglou A, Beglarigale A, Yazıcı H, et al. Transport properties and freeze-thaw resistance of mortar mixtures containing recycled concrete and glass aggregates. European Journal of Env Civil Eng. 2019;23(1):53–69. doi:10.1080/19648189.2016.1262289.
  • Mardani‐Aghabaglou A, Felekoğlu B, Ramyar K. Effect of false set related anomalies on rheological properties of cement paste mixtures in the presence of high range water reducing admixture. Struct Concr. 2021;22(S1):E619–E633. doi:10.1002/suco.202000166.
  • Mardani-Aghabaglou A, Hosseinnezhad H, Boyacı OC, et al. Abrasion resistance and transport properties of road concrete In 12th International Symposium on Concrete Roads; 2014, September. p. 23–26.
  • Mardani-Aghabaglou A, Kankal M, Nacar S, et al. Assessment of cement characteristics affecting rheological properties of cement pastes. Neural Comput Applic. 2021;33(19):12805–12826. doi:10.1007/s00521-021-05925-8.
  • Yüksel C, Mardani-Aghabaglou A, Beglarigale A, et al. Influence of water/powder ratio and powder type on alkali–silica reactivity and transport properties of self-consolidating concrete. Mater Struct. 2016;49(1–2):289–299. doi:10.1617/s11527-014-0497-y.
  • Hatungimana D, Yazici Ş, Orhan Ş, et al. Effect of styrene-butadiene copolymer (Sbr) latex on mechanical and transport properties of Portland cement mortar. J Green Build. 2020;15(4):185–197. doi:10.3992/jgb.15.4.185.
  • Wangler T, Scotto F, Lloret-Fritschi E, et al. 2019. Residence time distributions in continuous processing of concrete. In: Rheology and processing of construction materials. Cham: Springer. pp. 448–456 doi:10.1007/978-3-030-22566-7_52.
  • Khalil N, Aouad G, El Cheikh K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017;157:382–391. doi:10.1016/j.conbuildmat.2017.09.109.
  • Nematollahi B, Vijay P, Sanjayan J, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials. 2018;11(12):2352. doi:10.3390/ma11122352.
  • Chen Y, Jansen K, Zhang H, et al. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: an experimental and numerical study. Constr Build Mater. 2020;262:120094. doi:10.1016/j.conbuildmat.2020.120094.
  • Panda B, Tay YWD, Paul SC, et al. Current challenges and future potential of 3D concrete printing: Aktuelle herausforderungen und zukunftspotenziale des 3D‐druckens bei beton. Materialwissenschaft Werkst. 2018;49(5):666–673. doi:10.1002/mawe.201700279.
  • Wang L, Tian Z, Ma G, et al. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: experiments and molecular dynamics studies. Cem Concr Compos. 2020;110:103571. doi:10.1016/j.cemconcomp.2020.103571.
  • Keita E, Bessaies-Bey H, Zuo W, et al. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem Concr Res. 2019;123:105787. doi:10.1016/j.cemconres.2019.105787.
  • Lee H, Kim JHJ, Moon JH, et al. Evaluation of the mechanical properties of a 3D-printed mortar. Materials. 2019;12(24):4104. doi:10.3390/ma12244104.
  • Manikandan K, Jiang X, Singh AA, et al. Effects of nozzle geometries on 3D printing of clay constructs: quantifying contour deviation and mechanical properties. Procedia Manuf. 2020;48:678–683. doi:10.1016/j.promfg.2020.05.160.
  • Marchment T, Sanjayan J, Xia M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Mat Design. 2019;169:107684. doi:10.1016/j.matdes.2019.107684.
  • Marchment T, Sanjayan JG, Nematollahi B, et al. Interlayer strength of 3D printed concrete: influencing factors and method of enhancing. In 3D concrete printing technology. Oxford: Butterworth-Heinemann; 2019. pp. 241–264. doi:10.1016/B978-0-12-815481-6.00012-9.
  • Weng Y, Li M, Tan MJ, et al. Design 3D printing cementitious materials via fuller thompson theory and Marson-Percy model. Constr Build Mater. 2018;163:600–610. doi:10.1016/j.conbuildmat.2017.12.112.
  • Ma G, Li Z, Wang L, et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater. 2019;202:770–783. doi:10.1016/j.conbuildmat.2019.01.008.
  • Federowicz K, Kaszyńska M, Zieliński A, et al. Effect of curing methods on shrinkage development in 3D-printed concrete. Materials. 2020;13(11):2590. doi:10.3390/ma13112590.
  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019;123:105780. doi:10.1016/j.cemconres.2019.105780.
  • Şahin HG, Mardani A. Mechanical properties, durability performance and interlayer adhesion of 3DPC mixtures: a state‐of‐the‐art review. Struct Concr. 2023;24(4):5481–5505. doi:10.1002/suco.202200473.
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037. doi:10.1016/j.cemconres.2020.106037.
  • Geng Z, She W, Zuo W, et al. Layer-interface properties in 3D printed concrete: dual hierarchical structure and micromechanical characterization. Cem Concr Res. 2020;138:106220. doi:10.1016/j.cemconres.2020.106220.
  • Souza MT, Ferreira IM, de Moraes EG, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng. 2020;32:101833. doi:10.1016/j.jobe.2020.101833.
  • Roussel N, Ovarlez G, Garrault S, et al. The origins of thixotropy of fresh cement pastes. Cem Concr Res. 2012;42(1):148–157. doi:10.1016/j.cemconres.2011.09.004.
  • Lloret E, Shahab AR, Linus M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Comput-Aided Des. 2015;60:40–49. doi:10.1016/j.cad.2014.02.011.
  • Yuan Q, Zhou D, Khayat KH, et al. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cem Concr Res. 2017;99:183–189. doi:10.1016/j.cemconres.2017.05.014.
  • Kruger J, Zeranka S, van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater. 2019;224:372–386. doi:10.1016/j.conbuildmat.2019.07.078.
  • Panda B, Noor Mohamed NA, Paul SC, et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019;12(13):2149. doi:10.3390/ma12132149.
  • Kruger J, Van den Heever M, Cho S, et al. high-performance 3D printable concrete enhanced with nanomaterials. In Proceedings of the international conference on sustainable materials, systems and structures (SMSS 2019), vol. 533; 2019, March.
  • Latifi MR, Biricik Ö, Mardani Aghabaglou A. Effect of the addition of polypropylene fiber on concrete properties. J Adhes Sci Technol. 2022;36(4):345–369. doi:10.1080/01694243.2021.1922221.
  • Karakuzu K, Kobya V, Mardani-Aghabaglou A, et al. Adsorption properties of polycarboxylate ether-based high range water reducing admixture on cementitious systems: a review. Constr Build Mater. 2021;312:125366. doi:10.1016/j.conbuildmat.2021.125366.
  • Altun MG, Özen S, Mardani-Aghabaglou A. Effect of side chain length change of polycarboxylate-ether based high range water reducing admixture on properties of self-compacting concrete. Constr Build Mater. 2020;246:118427. doi:10.1016/j.conbuildmat.2020.118427.
  • Kalıpcılar İ, Mardani-Aghabaglou A, Sezer Gİ, et al. Assessment of the effect of sulfate attack on cement stabilized montmorillonite. Geomech Eng. 2016;10(6):807–826. doi:10.12989/gae.2016.10.6.807.
  • Özen S, Altun MG, Mardani-Aghabaglou A. Effect of the polycarboxylate based water reducing admixture structure on self-compacting concrete properties: main chain length. Constr Build Mater. 2020;255:119360. doi:10.1016/j.conbuildmat.2020.119360.
  • Yiğit B, Salihoğlu G, Mardani-Aghabaglou A, et al. Recycling of sewage sludge incineration ashes as construction material. J Facul Eng Archit Gazi University. 2020;35(3):1647–1664.
  • Sezer A, Mardani-Aghabaglou A, Boz A, et al. An investigation into strength and permittivity of compacted sand-clay mixtures by partial replacement of water with lignosulfonate. Acta Phys Pol A. 2016;130(1):23–27. doi:10.12693/APhysPolA.130.23.
  • Mardani-Aghabaglou A, Ilhan M, Ozen S. 2019). The effect of shrinkage reducing admixture and polypropylene fibers on drying shrinkage behaviour of concrete.
  • Mardani-Aghabaglou A. 2016). Investigation of cement-superplasticizer admixture compatibility (Doctoral dissertation, PhD Thesis). Turkey, Izmir, Ege University, Engineering Faculty, Civil Engineering Department.
  • Ting GHA, Tay YWD, Qian Y, et al. Utilization of recycled glass for 3D concrete printing: rheological and mechanical properties. J Mater Cycles Waste Manag. 2019;21(4):994–1003. doi:10.1007/s10163-019-00857-x.
  • Moeini MA, Hosseinpoor M, Yahia A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Constr Build Mater. 2020;257:119551. doi:10.1016/j.conbuildmat.2020.119551.
  • Reiter L, Wangler T, Roussel N, et al. The role of early age structural build-up in digital fabrication with concrete. Cem Concr Res. 2018;112:86–95. doi:10.1016/j.cemconres.2018.05.011.
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232. doi:10.1617/s11527-012-9828-z.
  • Kobya V, Kaya Y, Mardani-Aghabaglou A. Effect of amine and glycol-based grinding aids utilization rate on grinding efficiency and rheological properties of cementitious systems. J Build Eng. 2022;47:103917. doi:10.1016/j.jobe.2021.103917.
  • Özen S, Altun MG, Mardani-Aghabaglou A, et al. Multi-effect of superplasticisers main and side-chain length on cementitious systems with fly ash. Mag Concr Res. 2022;74(14):727–739. doi:10.1680/jmacr.21.00134.
  • Wangler T, Flatt RJ, Roussel N, et al. Printable cement-based materials: fresh properties measurements and control. In Digital fabrication with cement-based materials. Cham: Springer; 2022. pp. 99–136. doi:10.1007/978-3-030-90535-4_4.
  • Zhang DW, Wang DM, Lin XQ, et al. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes. Constr Build Mater. 2018;184:575–580. doi:10.1016/j.conbuildmat.2018.06.233.
  • Pan T, Jiang Y, He H, et al. Effect of structural build-up on ınterlayer bond strength of 3D printed cement mortars. Materials. 2021;14(2):236. doi:10.3390/ma14020236.
  • Yuan Q, Zhou D, Huang H, et al. Structural build-up, hydration and strength development of cement-based materials with accelerators. Constr Build Mater. 2020;259:119775. doi:10.1016/j.conbuildmat.2020.119775.
  • Xiao J, Hou S, Duan Z, et al. Rheology of 3D printable concrete prepared by secondary mixing of ready-mix concrete. Cem Concr Compos. 2023;138:104958. doi:10.1016/j.cemconcomp.2023.104958.
  • Xu Y, Yuan Q, Li Z, et al. Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Addit Manuf. 2021;47:102327. doi:10.1016/j.addma.2021.102327.
  • Roussel N, Cussigh F. Distinct-layer casting of SCC: the mechanical consequences of thixotropy. Cem Concr Res. 2008;38(5):624–632. doi:10.1016/j.cemconres.2007.09.023.
  • Yao H, Xie Z, Li Z, et al. The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite. Constr Build Mater. 2022;316:125809. doi:10.1016/j.conbuildmat.2021.125809.
  • Baz B, Aouad G, Kleib J, et al. Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments. Constr Build Mater. 2021;290:123220. doi:10.1016/j.conbuildmat.2021.123220.
  • Reißig S, Nerella VN, Mechtcherine V. Material design and rheological behavior of sustainable cement-based materials in the context of 3D printing. In RILEM ınternational conference on concrete and digital fabrication; 2022, June. pp. 439–445. Cham: springer International Publishing.
  • Liu H, Liu C, Wu Y, et al. Hardened properties of 3D printed concrete with recycled coarse aggregate. Cem Concr Res. 2022;159:106868. doi:10.1016/j.cemconres.2022.106868.
  • Pasupathy K, Ramakrishnan S, Sanjayan J. Enhancing the properties of foam concrete 3D printing using porous aggregates. Cem Concr Compos. 2022;133:104687. doi:10.1016/j.cemconcomp.2022.104687.
  • Baz B, Remond S, Aouad G. Influence of the mix composition on the thixotropy of 3D printable mortars. Mag Concr Res. 2022;74(6):271–283. doi:10.1680/jmacr.20.00193.
  • Yazici Ş, Mardani-Aghabaglou A, Tuyan M, et al. Mechanical properties and impact resistance of roller-compacted concrete containing polypropylene fibre. Mag Concr Res. 2015;67(16):867–875. doi:10.1680/macr.14.00242.
  • Sanjayan JG, Nematollahi B, Xia M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr Build Mater. 2018;172:468–475. doi:10.1016/j.conbuildmat.2018.03.232.
  • Kloft H, Krauss HW, Hack N, et al. Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cem Concr Res. 2020;134:106078. doi:10.1016/j.cemconres.2020.106078.
  • Moini M, Olek J, Magee B, et al. Additive manufacturing and characterization of architectured cement-based materials via X-ray micro-computed tomography. In RILEM ınternational conference on concrete and digital fabrication. Cham: Springer; 2018, September. pp. 176–189.
  • Tian W, Han N. Pore characteristics (>0.1 mm) of non-air entrained concrete destroyed by freeze-thaw cycles based on CT scanning and 3D printing. Cold Reg Sci Technol. 2018;151:314–322. doi:10.1016/j.coldregions.2018.03.027.
  • Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017;83:212–221. doi:10.1016/j.autcon.2017.08.019.
  • Wolfs RJM, Bos FP, Salet TAM. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res. 2019;119:132–140. doi:10.1016/j.cemconres.2019.02.017.
  • Le TT, Austin SA, Lim S, et al. Hardened properties of high-performance printing concrete. Cem Concr Res. 2012;42(3):558–566. doi:10.1016/j.cemconres.2011.12.003.
  • Xiao J, Chen Z, Ding T, et al. Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces. Cem Concr Compos. 2022;125:104313. doi:10.1016/j.cemconcomp.2021.104313.
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018;112:76–85. doi:10.1016/j.cemconres.2018.04.005.
  • Dressler I, Freund N, Lowke D. The effect of accelerator dosage on fresh concrete properties and on interlayer strength in shotcrete. 2020.
  • Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–1220. doi:10.1617/s11527-015-0571-0.
  • Zhang C, Nerella VN, Krishna A, et al. Mix design concepts for 3D printable concrete: a review. Cem Concr Compos. 2021;122:104155. doi:10.1016/j.cemconcomp.2021.104155.
  • Van Der Putten J, De Schutter G, Van Tittelboom K. Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials. RILEM Tech Lett. 2019;4:33–38. doi:10.21809/rilemtechlett.2019.84.
  • Megid WA, Khayat KH. Effect of concrete rheological properties on quality of formed surfaces cast with self-consolidating concrete and superworkable concrete. Cem Concr Compos. 2018;93:75–84. doi:10.1016/j.cemconcomp.2018.06.016.
  • Schankoski RA, de Matos PR, Pilar R, et al. Rheological properties and surface finish quality of eco-friendly self-compacting concretes containing quarry waste powders. J Cleaner Prod. 2020;257:120508. doi:10.1016/j.jclepro.2020.120508.
  • Nerella VN, Hempel S, Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr Build Mater. 2019;205:586–601. doi:10.1016/j.conbuildmat.2019.01.235.
  • Hosseini E, Zakertabrizi M, Korayem AH, et al. A novel method to enhance the interlayer bonding of 3D printing concrete: an experimental and computational investigation. Cem Concr Compos. 2019;99:112–119. doi:10.1016/j.cemconcomp.2019.03.008.
  • Moelich GM, Kruger J, Combrinck R. Modelling the interlayer bond strength of 3D printed concrete with surface moisture. Cem Concr Res. 2021;150:106559. doi:10.1016/j.cemconres.2021.106559.
  • Duan Z, Hou S, Xiao J, et al. Rheological properties of mortar containing recycled powders from construction and demolition wastes. Constr Build Mater. 2020;237:117622. doi:10.1016/j.conbuildmat.2019.117622.
  • Zou S, Xiao J, Duan Z, et al. On rheology of mortar with recycled fine aggregate for 3D printing. Constr Build Mater. 2021;311:125312. doi:10.1016/j.conbuildmat.2021.125312.
  • Kwon H. Experimentation and analysis of contour crafting (CC) process using uncured ceramic materials. California: University of Southern California; 2002.
  • Lu B, Li M, Wong TN, et al. Effect of printing parameters on material distribution in spray-based 3D concrete printing (S-3DCP). Autom Constr. 2021;124:103570. doi:10.1016/j.autcon.2021.103570.
  • Wang Z, Chen Z, Xiao J, et al. Experimental study on ınterfacial shear behavior of 3D printed recycled mortar. 3D Print Addit Manuf. 2023. doi:10.1089/3dp.2022.0338.
  • Sanjayan JG, Jayathilakage R, Rajeev P. Vibration induced active rheology control for 3D concrete printing. Cem Concr Res. 2021;140:106293. doi:10.1016/j.cemconres.2020.106293.
  • ] Wangler T, Lloret E, Reiter L, et al. Digital concrete: opportunities and challenges. RILEM Tech Lett. 2016;1:67–75. doi:10.21809/rilemtechlett.2016.16.
  • Austin S, Robins P, Pan Y. Tensile bond testing of concrete repairs. Mater Struct. 1995;28(5):249–259. doi:10.1007/BF02473259.
  • Tay YWD, Ting GHA, Qian Y, et al. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14(1):104–113. doi:10.1080/17452759.2018.1500420.
  • Yuan Q, Xie Z, Yao H, et al. Effect of polyacrylamide on the workability and interlayer interface properties of 3D printed cementitious materials. J Mater Res Technol. 2022;19:3394–3405. doi:10.1016/j.jmrt.2022.06.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.