95
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and computational study of L-Glutathione reduced as a green corrosion inhibitor for mild steel in alkaline environment

, , , , , , , , & show all
Pages 1540-1561 | Received 30 May 2023, Accepted 02 Oct 2023, Published online: 23 Oct 2023

References

  • Angst UM. Challenges and opportunities in corrosion of steel in concrete. Mater Struct. 2018;51(1):20. doi: 10.1617/s11527-017-1131-6.
  • Saikia B, Thomas J, Ramaswamy A, et al. Performance of hybrid rebars as longitudinal reinforcement in normal strength concrete. Mat. Struct. 2005;38(10):857–864. doi: 10.1007/BF02482252.
  • Hassoune M, Bezzar A, Sail L, et al. Corrosion inhibition of carbon steel by N, N′-dimethylaminoethanol in simulated concrete pore solution contaminated with NaCl. J Adhes Sci Technol. 2018;32(1):68–90. doi: 10.1080/01694243.2017.1341190.
  • Gonzalez J, Feliu S, Rodriguez P, et al. Some questions on the corrosion of steel in concrete—part I: when, how and how much steel corrodes. Mat. Struct. 1996;29(1):40–46. doi: 10.1007/BF02486005.
  • François R, Laurens S, Deby F. Corrosion and its consequences for reinforced concrete structures. Elsevier, Oxford; 2018.
  • Verma C, Ebenso EE, Quraishi M. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: a review. J Mol Liq. 2017;248:927–942. doi: 10.1016/j.molliq.2017.10.094.
  • Hassoune M, Bezzar A, Sail L, et al. Chloride threshold value to initiate steel corrosion in simulated concrete pore solution, and the effectiveness of DMEA as an amino-alcohol-based corrosion inhibitor. J Adhes Sci Technol. 2021;35(5):504–521. doi: 10.1080/01694243.2020.1816775.
  • Hou B, Li X, Ma X, et al. The cost of corrosion in China. Npj Mater Degrad. 2017;1(1):4. doi: 10.1038/s41529-017-0005-2.
  • Bastidas-Arteaga E. Reliability of reinforced concrete structures subjected to corrosion-fatigue and climate change. Int J Concr Struct Mater. 2018;12(1):13. doi: 10.1186/s40069-018-0235-x.
  • Hossain N, Asaduzzaman Chowdhury M, Kchaou M. An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. J Adhes Sci Technol. 2021;35(7):673–690. doi: 10.1080/01694243.2020.1816793.
  • Frontini MA, Schreiner W, Vázquez M, et al. Nitrite corrosion inhibition in chloride-rich electrolytes correlated to the electrical properties of surface films on carbon steel. Constr Build Mater. 2019;227:116650. doi: 10.1016/j.conbuildmat.2019.08.031.
  • Hurley BL, McCreery RL. Raman spectroscopy of monolayers formed from chromate corrosion inhibitor on copper surfaces. J Electrochem Soc. 2003;150(8):B367. doi: 10.1149/1.1586923.
  • Yohai L, Vázquez M, Valcarce M. Phosphate ions as corrosion inhibitors for reinforcement steel in chloride-rich environments. Electrochim Acta. 2013;102:88–96. doi: 10.1016/j.electacta.2013.03.180.
  • Brenna A, Bolzoni F, Pedeferri M, et al. Corrosion inhibitors for reinforced concrete structures: a study of binary mixtures. Int J Corros Scale Inhib. 2017;6:59–69.
  • Bolzoni F, Brenna A, Ormellese M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cem Concr Res. 2022;154:106719. doi: 10.1016/j.cemconres.2022.106719.
  • Volpi E, Olietti A, Stefanoni M, et al. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. J Electroanal Chem. 2015;736:38–46. doi: 10.1016/j.jelechem.2014.10.023.
  • Danoglidis PA, Konsta-Gdoutos MS, Shah SP. Relationship between the carbon nanotube dispersion state, electrochemical impedance and capacitance and mechanical properties of percolative nanoreinforced OPC mortars. Carbon. 2019;145:218–228. doi: 10.1016/j.carbon.2018.12.088.
  • Fu S, Yang X, Peng Y, et al. Corrosion behaviors of tetrasodium iminodisuccinate (IDS) as an environmentally friendly inhibitor: experimental and theoretical studies. Coatings. 2023;13:613.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussiañ16 Revision C.01. Wallingford: Gaussian Inc; 2016.
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–592. doi: 10.1002/jcc.22885.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5.
  • Biovia DS. Materials studio. San Diego: R2 Dassault Systèmes BIOVIA; 2017.
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001.
  • Haque J, Srivastava V, Quraishi MA, et al. Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution. Corros Sci. 2020;172:108665. doi: 10.1016/j.corsci.2020.108665.
  • Wang Q, Wu X, Zheng H, et al. Evaluation for fatsia japonica leaves extract (FJLE) as green corrosion inhibitor for carbon steel in simulated concrete pore solutions. J Build Eng. 2023;63:105568. doi: 10.1016/j.jobe.2022.105568.
  • Li X, Xie X. Adsorption and inhibition effect of two aminopyrimidine derivatives on steel surface in H2SO4 solution. J Taiwan Inst Chem Eng. 2014;45(6):3033–3045. doi: 10.1016/j.jtice.2014.08.019.
  • Zhou X, Yang H, Wang F. [BMIM] BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim Acta. 2011;56(11):4268–4275. doi: 10.1016/j.electacta.2011.01.081.
  • Ji T, Ma F, Liu D, et al. Effect of diamino ((2-((2-aminoethyl) amino) ethyl) amino) methanethiol on the corrosion resistance of carbon steel in simulated concrete pore solutions. Int J Electrochem Sci. 2018;13(6):5440–5451. doi: 10.20964/2018.06.56.
  • Qiang Y, Guo L, Zhang S, et al. Synergistic effect of tartaric acid with 2, 6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci Rep. 2016;6(1):33305. doi: 10.1038/srep33305.
  • Fiori-Bimbi MV, Alvarez PE, Vaca H, et al. Corrosion inhibition of mild steel in HCL solution by pectin. Corros Sci. 2015;92:192–199. doi: 10.1016/j.corsci.2014.12.002.
  • Bommersbach P, Alemany-Dumont C, Millet JP, et al. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim Acta. 2005;51(6):1076–1084. doi: 10.1016/j.electacta.2005.06.001.
  • Li J, Luo M, Chen Z, et al. Anti-corrosion mechanism of MgAl-LDHs inhibitors with varying anionic charge on reinforcing steel in simulated concrete pore solutions. Constr Build Mater. 2023;363:129882. doi: 10.1016/j.conbuildmat.2022.129882.
  • Mendonça GL, Costa SN, Freire VN, et al. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corros Sci. 2017;115:41–55. doi: 10.1016/j.corsci.2016.11.012.
  • Brug G, van den Eeden AL, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem. 1984;176(1-2):275–295. doi: 10.1016/S0022-0728(84)80324-1.
  • Wang Q, Fu S, Yang X, et al. An imide-based organic polymer as an inhibitor for HRB400 steel in simulated concrete pore solution: experimental and theoretical calculations. J Mol Struct. 2022;1265:133426. doi: 10.1016/j.molstruc.2022.133426.
  • Wang Q, Peng Y, Fu S, et al. Experimental and theoretical investigations of 1,1’-Dibenzyl-[4,4’-bipyridine]-1,1’-diium chloride as effective corrosion inhibitor for Q235 steel in 1M HCl. Mater Today Commun. 2023;35:106169. doi: 10.1016/j.mtcomm.2023.106169.
  • Peimani A, Nasr-Esfahani M. Application of anise extract for corrosion inhibition of carbon steel in CO2 saturated 3.0% NaCl solution. Prot Met Phys Chem Surf. 2018;54(1):122–134. doi: 10.1134/S2070205118010240.
  • Yang X, Fu S, Wang Q, et al. Protective behaviour of naphthylamine derivatives for steel reinforcement in the simulated concrete pore solutions: detailed experimental and computational explorations. J Mol Struct. 2022;1270:133898. doi: 10.1016/j.molstruc.2022.133898.
  • Xiang T, Zhang Y, Cui L, et al. Synergistic inhibition of benzotriazole and sodium D-gluconate on steel corrosion in simulated concrete pore solution. Colloids Surf Physicochem Eng Asp. 2023;661:130918. doi: 10.1016/j.colsurfa.2023.130918.
  • Abd El-Lateef HM, Shalabi K, Tantawy AH. Corrosion inhibition and adsorption features of novel bioactive cationic surfactants bearing benzenesulphonamide on C1018-steel under sweet conditions: combined modeling and experimental approaches. J Mol Liq. 2020;320:114564. doi: 10.1016/j.molliq.2020.114564.
  • HosseinpourRokni M. Indirect interactions between the ionic liquid and Cu surface in 0.5 M HCl: a novel mechanism explaining cathodic corrosion inhibition. Corros Sci. 2023;216:111100.
  • Zhang Z, Ba H, Wu Z. Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: electrochemical and adsorption behavior studies. Constr Build Mater. 2019;227:117080. doi: 10.1016/j.conbuildmat.2019.117080.
  • Abd El-Lateef HM, Khalaf MM, Gouda M, et al. Novel water-soluble organoselenocyanates and symmetrical diselenides tethered N-succinanilate and N-maleanilate as corrosion inhibitors for reinforced steel in the simulated concrete pore solution. Constr Build Mater. 2023;366:130135. doi: 10.1016/j.conbuildmat.2022.130135.
  • Faustin M, Maciuk A, Salvin P, et al. Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum chif in 1 M hydrochloric acid: electrochemical and phytochemical studies. Corros Sci. 2015;92:287–300. doi: 10.1016/j.corsci.2014.12.005.
  • Abd El-Lateef HM, Alnajjar AO, Khalaf MM. Advanced self-healing coatings based on ZnO, TiO2, and ZnO-TiO2/polyvinyl chloride nanocomposite systems for corrosion protection of carbon steel in acidic solutions containing chloride. J Taiwan Inst Chem Eng. 2020;116:286–302. doi: 10.1016/j.jtice.2020.11.015.
  • Singh P, Bhrara K, Singh G. Adsorption and kinetic studies of L-leucine as an inhibitor on mild steel in acidic media. Appl Surf Sci. 2008;254(18):5927–5935. doi: 10.1016/j.apsusc.2008.03.154.
  • Lu F, Fu S, Wang L, et al. Enhanced performance of inverted polymer solar cells by adding benzyl viologen dichloride into ZnO electron transport layer. Opt Mater. 2023;139:113782. doi: 10.1016/j.optmat.2023.113782.
  • Zhu Y. Stability of reduced glutathione under different conditions. Mod Food Sci Technol. 2011;27:919–923.
  • Madkour LH, Kaya S, Obot IB. Computational, Monte Carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process. J Mol Liq. 2018;260:351–374. doi: 10.1016/j.molliq.2018.01.055.
  • Guo L, El Bakri Y, Yu R, et al. Newly synthesized triazolopyrimidine derivative as an inhibitor for mild steel corrosion in HCl medium: an experimental and in silico study. J Mater Res Technol. 2020;9(3):6568–6578. doi: 10.1016/j.jmrt.2020.04.044.
  • Shen L, Zhang H. Corrosion inhibition and adsorption behavior of (3-aminopropyl)-triethoxysilane on steel surface in the simulated concrete pore solution contaminated with chloride. J Mol Liq. 2022;363:119896. doi: 10.1016/j.molliq.2022.119896.
  • Fouda A, Abdallah M, El-Badrawy Z. Some hydrazone derivatives as corrosion inhibitors for iron in 3.5% H3PO4 solution. Afr J Pure Appl Chem. 2011;5:224–236.
  • Badiea AM, Mohana KN. Effect of fluid velocity and temperature on the corrosion mechanism of low carbon steel in industrial water in the absence and presence of 2-hydrazino benzothiazole. Korean J Chem Eng. 2008;25(6):1292–1299. doi: 10.1007/s11814-008-0212-1.
  • Singh A, Thakur S, Pani B, et al. Solvent-free microwave assisted synthesis and corrosion inhibition study of a series of hydrazones derived from thiophene derivatives: experimental, surface and theoretical study. J Mol Liq. 2019;283:788–803. doi: 10.1016/j.molliq.2019.03.126.
  • Zhang S. Entropy: a concept that is not a physical quantity. Phys Essays. 2012;25(2):172–176.
  • Obot I, Macdonald D, Gasem Z. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci. 2015;99:1–30. doi: 10.1016/j.corsci.2015.01.037.
  • Han P, He Y, Chen C, et al. Study on synergistic mechanism of inhibitor mixture based on electron transfer behavior. Sci Rep. 2016;6:33252. doi: 10.1038/srep33252.
  • Saha SK, Dutta A, Ghosh P, et al. Adsorption and corrosion inhibition effect of chiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys Chem Chem Phys. 2015;17(8):5679–5690. doi: 10.1039/c4cp05614k.
  • Subbiah K, Lee H-S, Al-Hadeethi MR, et al. Assessment of the inhibitive performance of a hydrazone derivative for steel rebar in a simulated concrete medium: establishing the inhibition mechanism at an experimental and theoretical level. Chem Eng J. 2023;458:141347. doi: 10.1016/j.cej.2023.141347.
  • Hsissou R, about S, Benhiba F, et al. Insight into the corrosion inhibition of novel macromolecular epoxy resin as highly efficient inhibitor for carbon steel in acidic mediums: synthesis, characterization, electrochemical techniques, AFM/UV–visible and computational investigations. J Mol Liq. 2021;337:116492. doi: 10.1016/j.molliq.2021.116492.
  • Hsissou R. Review on epoxy polymers and its composites as a potential anticorrosive coatings for carbon steel in 3.5% NaCl solution: computational approaches. J Mol Liq. 2021;336:116307. doi: 10.1016/j.molliq.2021.116307.
  • Liu Z, Lu T, Chen Q. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon. 2021;171:514–523. doi: 10.1016/j.carbon.2020.09.048.
  • Lgaz H, Salghi R, Masroor S, et al. Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: insights from electronic-scale DFT and atomic-scale molecular dynamics. J Mol Liq. 2020;308:112998. doi: 10.1016/j.molliq.2020.112998.
  • Zheng T, Liu J, Wang M, et al. Synergistic corrosion inhibition effects of quaternary ammonium salt cationic surfactants and thiourea on Q235 steel in sulfuric acid: experimental and theoretical research. Corros Sci. 2022;199:110199. doi: 10.1016/j.corsci.2022.110199.
  • Hofmann D, Fritz L, Ulbrich J, et al. Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromol Theory Simul. 2000;9(6):293–327. doi: 10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.