72
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A rapid two-step process to prepare a high-throughput, efficient, reusable superhydrophobic–superoleophilic stainless steel mesh for oil/water separation

, , , , , , & show all
Pages 2557-2583 | Received 27 Jul 2023, Accepted 10 Jan 2024, Published online: 01 Feb 2024

References

  • Alea C, Ruiz CI, Yap JB, et al. An investigation of aquatic oil spills in the Philippines from 2000 to 2021. Mar Pollut Bull. 2022;185(Pt A):114241. doi: 10.1016/j.marpolbul.2022.114241.
  • Zhou Q, Wang S, Liu J, et al. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geosci Front. 2022;13(5):101427. doi: 10.1016/j.gsf.2022.101427.
  • Cui W, Fan T, Li Y, et al. Robust functional janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J Membr Sci. 2022;663:121018. doi: 10.1016/j.memsci.2022.121018.
  • Farooq U, Taban IC, Daling PS. Study of the oil interaction towards oil spill recovery skimmer material: effect of the oil weathering and emulsification properties. Mar Pollut Bull. 2018;135:119–128. doi: 10.1016/j.marpolbul.2018.06.017.
  • Jamsaz A, Goharshadi EK, Barras A, et al. Magnetically driven superhydrophobic/superoleophilic graphene-based polyurethane sponge for highly efficient oil/water separation and demulsification. Sep Purif Technol. 2021;274:118931. doi: 10.1016/j.seppur.2021.118931.
  • Yang L, Li D, Zhang L, et al. On the utilization of waste fried oil as flotation collector to remove carbon from coal fly ash. Waste Manag. 2020;113:62–69. doi: 10.1016/j.wasman.2020.05.045.
  • Hu Y, Mu S, Zhang J, et al. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: a review. Chemosphere. 2022;308(Pt 1):136145. doi: 10.1016/j.chemosphere.2022.136145.
  • Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci. 2011;56(1):1–108. doi: 10.1016/j.pmatsci.2010.04.003.
  • Song Y-Y, Zhang X, Yang J-L, et al. Ultrafast sorption of micro-oil droplets within water by superhydrophobic–superoleophilic conical micro-arrays. Sep Purif Technol. 2023;315:123651. doi: 10.1016/j.seppur.2023.123651.
  • Wolff JO, Seiter M, Gorb SN. The water-repellent cerotegument of whip-spiders (Arachnida: Amblypygi). Arthropod Struct Dev. 2017;46(1):116–129. doi: 10.1016/j.asd.2016.10.010.
  • Wang S, Huang H, Li X, et al. An effective approach to fabricate the corrosion resistance of superhydrophobic ZnO/Ni composite coating on carbon steel substrate. J Adhes Sci Technol. 2022;36(21):2328–2345. doi: 10.1080/01694243.2021.2010882.
  • Xu J-H, Yan X, Chen Y, et al. Fish-scale nickel mesh with switchable wettability for efficient oil/water separation. J Environ Chem Eng. 2021;9(5):106228. doi: 10.1016/j.jece.2021.106228.
  • Zhou Q, Feng B, Hao L, et al. Preparation and application of low-cost fibers for efficient adsorption of oil from coal pyrolysis wastewater and establishment of quantitative equation for calculating oil contact angle under water. J Water Process Eng. 2023;51:103461. doi: 10.1016/j.jwpe.2022.103461.
  • Liu Y, Liu K, Zhao W, et al. Swan feather-spired fluorine-free superhydrophobic self-cleaning cotton cloth with strong oil–water separation function. Prog Org Coat. 2023;183:107798. doi: 10.1016/j.porgcoat.2023.107798.
  • Ghaedi M, Mehranbod N, Khorram M. Facile fabrication of robust superhydrophobic polyurethane sponge modified with polydopamine-silica nanoparticle for effective oil/water separation. React Funct Polym. 2023;191:105657. doi: 10.1016/j.reactfunctpolym.2023.105657.
  • Lai J, Guo F, Wang L, et al. Poly lauryl methacrylate modified superhydrophobic Fe foam, with excellent stability and magnetic oil/water separation ability. Mater Chem Phys. 2023;305:127896. doi: 10.1016/j.matchemphys.2023.127896.
  • Shahid M, Maiti S, Adivarekar RV, et al. Biomaterial based fabrication of superhydrophobic textiles – a review. Mater Today Chem. 2022;24:100940. doi: 10.1016/j.mtchem.2022.100940.
  • Al-Rehaili LJ, Altuwirqi RM, Aljarb AA, et al. A superhydrophobic graphene@copper mesh irradiated by laser for efficient oil/water separation. Surf Coat Technol. 2023;463:129495. doi: 10.1016/j.surfcoat.2023.129495.
  • Xuan J, Xu L, Xin Y, et al. Robust superhydrophobic Ni–Co electrodeposited carbon felt for hot water repellency and controllable oil/water separation. J Environ Chem Eng. 2023;11(1):109102. doi: 10.1016/j.jece.2022.109102.
  • Dong W, Gao Q, Zhou S, et al. Ultra-superhydrophobic MOFs coated on polydopamine-modified polyethylene terephthalate for efficient removal of particulate matter. Chem Eng J. 2023;466:143083. doi: 10.1016/j.cej.2023.143083.
  • Sun S, Xu P, Xiao Q-R, et al. One-step solvent-free fabrication of superhydrophobic cellulose powder with reversible wettability. Prog Org Coat. 2022;173:107170. doi: 10.1016/j.porgcoat.2022.107170.
  • Guan H, Li R, Lian R, et al. A biomimetic design for efficient petrochemical spill disposal: CoFe-PBA modified superhydrophobic melamine sponge with mechanical/chemical durability and low fire risk. J Hazard Mater. 2023;459:132041. doi: 10.1016/j.jhazmat.2023.132041.
  • Liu B, Chen B, Ling J, et al. Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: potential and challenges. J Hazard Mater. 2022;437:129340. doi: 10.1016/j.jhazmat.2022.129340.
  • Zhu M, Liu Y, Chen M, et al. Metal mesh-based special wettability materials for oil–water separation: a review of the recent development. J Petrol Sci Eng. 2021;205:108889. doi: 10.1016/j.petrol.2021.108889.
  • Zhang J, Xue J, Wu Z, et al. Superwetting stainless steel mesh decorated with TCPP-doped UiO-66-NH2 with enhanced gravity-driven oil–water separation and visible-light-driven sterilization performance. Appl Surf Sci. 2023;638:157993. doi: 10.1016/j.apsusc.2023.157993.
  • Yan J, Wu Y, Guo Z, et al. Green fabrication of durable foam composites with asymmetric wettability by an emulsion spray-coating method for photothermally induced crude oil cleanup. J Colloid Interface Sci. 2023;648:798–808. doi: 10.1016/j.jcis.2023.06.026.
  • Liu X, Wang Y, Chen Z, et al. A self-modification approach toward transparent superhydrophobic glass for rainproofing and superhydrophobic fiberglass mesh for oil–water separation. Appl Surf Sci. 2016;360:789–797. doi: 10.1016/j.apsusc.2015.11.069.
  • Wang W, Li F, Xu Y, et al. Laminated Cu-GO-Cu composite foils with improved mechanical and thermal properties by alternating DC electro-deposition and electrophoresis. J Mater Res Technol. 2022;19:1724–1739. doi: 10.1016/j.jmrt.2022.05.166.
  • Silverio V, Canane PAG, Cardoso S. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids Surf A. 2019;570:210–217. doi: 10.1016/j.colsurfa.2019.03.032.
  • Saji VS. Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation. Adv Colloid Interface Sci. 2020;283:102245. doi: 10.1016/j.cis.2020.102245.
  • You Q, Ran G, Wang C, et al. A novel superhydrophilic–underwater superoleophobic Zn-ZnO electrodeposited copper mesh for efficient oil/water separation. Sep Purif Technol. 2018;193:21–28. doi: 10.1016/j.seppur.2017.10.055.
  • Xiang M, Jiang M, Zhang Y, et al. Fabrication of a novel superhydrophobic and superoleophilic surface by one-step electrodeposition method for continuous oil/water separation. Appl Surf Sci. 2018;434:1015–1020. doi: 10.1016/j.apsusc.2017.10.183.
  • Li K, Xu L, Yuan X, et al. Preparation of self-healing superhydrophobic cotton fabric based on silica aerogel for self-cleaning and oil/water separation. J Adhes Sci Technol. 2023;37(14):2154–2174. doi: 10.1080/01694243.2022.2117915.
  • Roslan RA, Lau WJ, Ong CS, et al. Simple surface modification of steel mesh for efficient oil/water separation via gravity filtration. J Water Process Eng. 2023;54:104063. doi: 10.1016/j.jwpe.2023.104063.
  • Wang Z, Ren Y, Wu F, et al. Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: synthesis and potential application. Adv Colloid Interface Sci. 2023;318:102932. doi: 10.1016/j.cis.2023.102932.
  • Tjale L, Richards H, Mahlangu O, et al. Silica nanoparticle modified polysulfone/polypropylene membrane for separation of oil–water emulsions. Results Eng. 2022;16:100623. doi: 10.1016/j.rineng.2022.100623.
  • Malfait S, Gérard S, Plantier-Royon R, et al. Synthesis of bi- and tetracatenar highly fluorinated compounds for grafting on silicone materials. J Fluorine Chem. 2011;132(10):760–766. doi: 10.1016/j.jfluchem.2011.05.020.
  • Mofokeng M, Nthunya LN, Gutierrez L, et al. Perfluorooctyltriethoxy silane and carbon nanotubes-modified PVDF superoleophilic nanofibre membrane for oil-in-water adsorption and recovery. J Environ Chem Eng. 2020;8(6):104497. doi: 10.1016/j.jece.2020.104497.
  • Xu C, Luo Y, Zhou L, et al. Fabrication of durable superhydrophobic stainless steel mesh with nano/micro flower-like morphologies for self-cleaning and efficient oil/water separation. J Bionic Eng. 2022;19(6):1615–1624. doi: 10.1007/s42235-022-00231-y.
  • Jiang Y, Duan X, Tan B, et al. A one-step preparation of superhydrophobic stainless steel mesh and application in raffinate cleaning technology as a coalescer for contaminated organic-water separation. Hydrometallurgy. 2022;211:105891. doi: 10.1016/j.hydromet.2022.105891.
  • Bai C, Hu C, Zhang X, et al. A rapid two-step method for fabrication of superhydrophobic–superoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties. Colloids Surf A. 2022;651:129635. doi: 10.1016/j.colsurfa.2022.129635.
  • Chen X, Yin Z, Deng Y, et al. Harsh environment-tolerant and robust superhydrophobic graphene-based composite membrane for wearable strain sensor. Sens Actuators A. 2023;362:114630. doi: 10.1016/j.sna.2023.114630.
  • Zhang X, Zhou T, Liu J, et al. Volcano-like hierarchical superhydrophobic surface synthesized via facile one-step secondary anodic oxidation. Appl Surf Sci. 2021;540:148337. doi: 10.1016/j.apsusc.2020.148337.
  • Yang S, Chen L, Wang C, et al. Surface roughness induced superhydrophobicity of graphene foam for oil–water separation. J Colloid Interface Sci. 2017;508:254–262. doi: 10.1016/j.jcis.2017.08.061.
  • Cai Y, Li J, Yi L, et al. Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals. Appl Surf Sci. 2018;450:102–111. doi: 10.1016/j.apsusc.2018.04.186.
  • Sun X, Wang X, Li J, et al. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep Purif Technol. 2022;287:120617. doi: 10.1016/j.seppur.2022.120617.
  • Xing S, Wang L, Jiang C, et al. Influence of Y2O3 nanoparticles on microstructures and properties of electrodeposited Ni–W–Y2O3 nanocrystalline coatings. Vacuum. 2020;181:109665. doi: 10.1016/j.vacuum.2020.109665.
  • Xu L, Wan J, Yuan X, et al. Preparation of durable superamphiphobic cotton fabrics with self-cleaning and liquid repellency. J Adhes Sci Technol. 2022;36(1):1–20. doi: 10.1080/01694243.2021.1902616.
  • Huang J, Zhang L. Effects of hot water on the wettability of superhydrophobic metal surfaces. Appl Surf Sci. 2022;598:153677. doi: 10.1016/j.apsusc.2022.153677.
  • Nesbitt HW, Legrand D, Bancroft GM. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys Chem Miner. 2000;27(5):357–366. doi: 10.1007/s002690050265.
  • Li H, Li W, Yan L, et al. Selective no loss transportation of water droplets based on the superhydrophobic surfaces with controllable high water adhesion. J Adhes Sci Technol. 2016;30(10):1087–1094. doi: 10.1080/01694243.2015.1137703.
  • Xu L, Zhang X, Yang K, et al. Durable superamphiphobic cotton fabrics with improved ultraviolet radiation resistance and photocatalysis. J Adhes Sci Technol. 2022;36(20):2176–2198. doi: 10.1080/01694243.2021.2004034.
  • Hong Z, Jiang H, Xue M, et al. SiC-enhanced polyurethane composite coatings with excellent anti-fouling, mechanical, thermal, chemical properties on various substrates. Prog Org Coat. 2022;168:106909. doi: 10.1016/j.porgcoat.2022.106909.
  • Daneshnia A, Raeissi K, Salehikahrizsangi P. Corrosion protection of superhydrophobic/amphiphobic cobalt coating with anti-icing and self-cleaning properties fabricated by a one-step electrodeposition method. J Alloys Compd. 2023;948:169767. doi: 10.1016/j.jallcom.2023.169767.
  • Lu Y, Li Z, Hailu G, et al. Study on the oil/water separation performance of a super-hydrophobic copper mesh under downhole conditions. J Ind Eng Chem. 2019;72:310–318. doi: 10.1016/j.jiec.2018.12.031.
  • Alazab AA, Saleh TA. Superhydrophobic fluorinated nanoparticle-modified surfaces for fast, efficient, and selective elimination of oil from water. Surf Interfaces. 2023;37:102721. doi: 10.1016/j.surfin.2023.102721.
  • Sutar RS, Latthe SS, Gharge NB, et al. Facile approach to fabricate a high-performance superhydrophobic PS/OTS modified SS mesh for oil–water separation. Colloids Surf A. 2023;657:130561. doi: 10.1016/j.colsurfa.2022.130561.
  • Sutar RS, Salunkhe RC, Latthe SS, et al. Superhydrophobic PU sponge modified by hydrophobic silica NPs—polystyrene nanocomposite for oil–water separation. Macromol Symp. 2020;393:2000035.
  • Latthe SS, Nakata K, Hofer R, Fujishima A, Terashima C, et al. Lotus effect-basedsuperhydrophobic surfaces: candle soot as a promising class of nanoparticles forself-cleaning and oil-water separation applications, in: Green Chemistry forSurface Coatings,Inks and Adhesives: Sustainable Applications, The Royal Societyof Chemistry, 2019, pp.92-119. doi: 10.1039/9781788012997-00092.
  • Sutar RS, Kulkarni NP, Nagappan S, et al. Octadecyltrichlorosilane-modified superhydrophobic–superoleophilic stainless steel mesh for oil-water separation. Macromol Symp. 2021;400(1):2100096.
  • Lee MW, An S, Joshi B, et al. Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers. ACS Appl Mater Interfaces. 2013;5(4):1232–1239. doi: 10.1021/am303008s.
  • Latthe SS, Demirel AL. Polystyrene/octadecyltrichlorosilane superhydrophobic coatings with hierarchical morphology. Polym Chem. 2013;4(2):246–249. doi: 10.1039/C2PY20731A.
  • Sutar RS, Mane MS, Latthe SS, et al. Oil–water separation by ZnO-based superhydrophobic PU sponges. Macromol Symp. 2020;393:2000036.
  • Latthe SS, Sutar RS, Bhosale AK, et al. Chapter 15 -Superhydrophobic surfaces for oil-water separation, in: S.K. Samal, S. MohantyS.K. Nayak (Eds.), Superhydrophobic Polymer Coatings, Elsevier, 2019, pp. 339-356. doi: 10.1016/B978-0-12-816671-0.09994-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.