84
Views
13
CrossRef citations to date
0
Altmetric
Original

α-PHENYL-N-tert-BUTYLNITRONE ATTENUATES HYPEROXIA-INDUCED LUNG INJURY BY DOWN-MODULATING INFLAMMATION IN NEONATAL RATS

, , , , , & show all
Pages 234-249 | Received 13 Aug 2008, Accepted 22 Oct 2008, Published online: 02 Jul 2009

REFERENCES

  • Bland R D. Neonatal chronic lung disease in the post-surfactant era. Biol Neonate 2005; 88: 181–191
  • Bhandari A, Panitch H B. Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol 2006; 30: 219–226
  • Coalson J J. Pathology of new bronchopulmonary dysplasia. Semin Neonatol 2003; 8: 73–81
  • Kramer B W. Antenatal inflammation and lung injury: prenatal origin of neonatal disease. J Perinatol 2008; 28(Suppl 1)S21–S27
  • Chess P R, D'Angio C T, Pryhuber G S, Maniscalco W M. Pathogenesis of bronchopulmonary dysplasia. Semin Perinatol 2006; 30: 171–178
  • Walsh M C, Szefler S, Davis J, Allen M, Van Marter L, Abman S, Blackmon L, Jobe A. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 2006; 117: S52–S56
  • Defraigne J O, Detry O, Pincemail J, Franssen C, Meurisse M, Lamy M, Limet R. Direct evidence of free radical production after ischaemia and reperfusion and protective effect of desferrioxamine: ESR and vitamin E studies. Eur J Vasc Surg 1994; 8: 537–543
  • Carney J M, Floyd R A. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci 1991; 3: 47–57
  • Cao X, Phillis J W. Alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res 1994; 644: 267–272
  • Atamna H, Paler-Martinez A, Ames B N. N-t-butyl hydroxylamine, a hydrolysis product of alpha-phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J Biol Chem 2000; 275: 6741–6748
  • Sata T, Kubota E, Misra H P, Mojarad M, Pakbaz H, Said S I. Paraquat-induced lung injury: prevention by N-tert-butyl-alpha-phenylnitrone, a free-radical spin-trapping agent. Am J Physiol 1992; 262: L147–L152
  • Pogrebniak H W, Merino M J, Hahn S M, Mitchell J B, Pass H I. Spin trap salvage from endotoxemia: the role of cytokine down-regulation. Surgery 1992; 112: 130–139, discussion 138–139
  • Stewart C A, Hyam K, Wallis G, Sang H, Robinson K A, Floyd R A, Kotake Y, Hensley K. Phenyl-N-tert-butylnitrone demonstrates broad-spectrum inhibition of apoptosis-associated gene expression in endotoxin-treated rats. Arch Biochem Biophys 1999; 365: 71–74
  • Naito Y, Takagi T, Ishikawa T, Handa O, Matsumoto N, Yagi N, Matsuyama K, Yoshida N, Yoshikawa T, Kotake Y. Alpha-Phenyl-N-tert-butylnitrone provides protection from dextran sulfate sodium-induced colitis in mice. Antioxid Redox Signal 2002; 4: 195–206
  • Cooney T P, Thurlbeck W M. The radial alveolar count method of Emery and Mithal: a reappraisal 1—postnatal lung growth. Thorax 1982; 37: 572–579
  • Cooney T P, Thurlbeck W M. The radial alveolar count method of Emery and Mithal: a reappraisal 2—intrauterine and early postnatal lung growth. Thorax 1982; 37: 580–583
  • Babior B M. NADPH oxidase: an update. Blood 1999; 93: 1464–1476
  • Cross A R, Segal A W. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004; 1657: 1–22
  • Robinson J M, Badwey J A. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 1995; 103: 163–180
  • Hohler B, Holzapfel B, Kummer W. NADPH oxidase subunits and superoxide production in porcine pulmonary artery endothelial cells. Histochem Cell Biol 2000; 114: 29–37
  • Li J M, Shah A M. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 2002; 277: 19952–19960
  • Yam J, Frank L, Roberts R J. Oxygen toxicity: comparison of lung biochemical responses in neonatal and adult rats. Pediatr Res 1978; 12: 115–119
  • Kunig A M, Balasubramaniam V, Markham N E, Morgan D, Montgomery G, Grover T R, Abman S H. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2005; 289: L529–L535
  • Warner B B, Stuart L A, Papes R A, Wispe J R. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 1998; 275: L110–L117
  • Jobe A J. The new BPD: an arrest of lung development. Pediatr Res 1999; 46: 641–643
  • Bucher J R, Roberts R J. The development of the newborn rat lung in hyperoxia: a dose-response study of lung growth, maturation, and changes in antioxidant enzyme activities. Pediatr Res 1981; 15: 999–1008
  • McGrath-Morrow S A, Stahl J. Apoptosis in neonatal murine lung exposed to hyperoxia. Am J Respir Cell Mol Biol 2001; 25: 150–155
  • Saugstad O D. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 2003; 8: 39–49
  • Li J, Gao X, Qian M, Eaton J W. Mitochondrial metabolism underlies hyperoxic cell damage. Free Radic Biol Med 2004; 36: 1460–1470
  • Parinandi N L, Kleinberg M A, Usatyuk P V, Cummings R J, Pennathur A, Cardounel A J, Zweier J L, Garcia J G, Natarajan V. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 284: L26–L38
  • Bastian N R, Hibbs J B, Jr. Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol 1994; 6: 131–139
  • Moores H K, Beehler C J, Hanley M E, Shanley P F, Stevens E E, Repine J E, Terada L S. Xanthine oxidase promotes neutrophil sequestration but not injury in hyperoxic lungs. J Appl Physiol 1994; 76: 941–945
  • Kinnula V L, Chang L Y, Ho Y S, Crapo J D. Hydrogen peroxide release from alveolar macrophages and alveolar type II cells during adaptation to hyperoxia in vivo. Exp Lung Res 1992; 18: 655–673
  • Delacourt C, d'Ortho M P, Macquin-Mavier I, Pezet S, Housset B, Lafuma C, Harf A. Oxidant-antioxidant balance in alveolar macrophages from newborn rats. Eur Respir J 1996; 9: 2517–2524
  • Lindsay L, Oliver S J, Freeman S L, Josien R, Krauss A, Kaplan G. Modulation of hyperoxia-induced TNF-alpha expression in the newborn rat lung by thalidomide and dexamethasone. Inflammation 2000; 24: 347–356
  • Kotecha S, Wangoo A, Silverman M, Shaw R J. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 1996; 128: 464–469
  • Lecart C, Cayabyab R, Buckley S, Morrison J, Kwong K Y, Warburton D, Ramanathan R, Jones C A, Minoo P. Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation. Biol Neonate 2000; 77: 217–223
  • Kwong K Y, Niang S, Literat A, Zhu N L, Ramanathan R, Jones C A, Minoo P. Expression of transforming growth factor beta (TGF-b1) by human preterm lung inflammatory cells. Life Sci 2006; 79: 2349–2356
  • Marcho Z, White J E, Higgins P J, Tsan M F. Tumor necrosis factor enhances endothelial cell susceptibility to oxygen toxicity: role of glutathione. Am J Respir Cell Mol Biol 1991; 5: 556–562
  • Shalaby M R, Aggarwal B B, Rinderknecht E, Svedersky L P, Finkle B S, Palladino M A, Jr. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 1985; 135: 2069–2073
  • Tsan M F, White J E, Michelsen P B, Wong G H. Pulmonary O2 toxicity: role of endogenous tumor necrosis factor. Exp Lung Res 1995; 21: 589–597
  • Choo-Wing R, Nedrelow J H, Homer R J, Elias J A, Bhandari V. Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2007; 293: 142–150
  • Gauldie J, Galt T, Bonniaud P, Robbins C, Kelly M, Warburton D. Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol 2003; 163: 2575–2584
  • Vicencio A G, Lee C G, Cho S J, Eickelberg O, Chuu Y, Haddad G G, Elias J A. Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia?. Am J Respir Cell Mol Biol 2004; 31: 650–656
  • Kunzmann S, Speer C P, Jobe A H, Kramer B W. Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol 2007; 292: L223–L231
  • French J F, Thomas C E, Downs T R, Ohlweiler D F, Carr A A, Dage R C. Protective effects of a cyclic nitrone antioxidant in animal models of endotoxic shock and chronic bacteremia. Circ Shock 1994; 43: 130–136
  • Sang H, Wallis G L, Stewart C A, Kotake Y. Expression of cytokines and activation of transcription factors in lipopolysaccharide-administered rats and their inhibition by phenyl N-tert-butylnitrone (PBN). Arch Biochem Biophys 1999; 363: 341–348
  • Miyajima T, Kotake Y. Spin trapping agent, phenyl N-tert-butyl nitrone, inhibits induction of nitric oxide synthase in endotoxin-induced shock in mice. Biochem Biophys Res Commun 1995; 215: 114–121
  • Lin S, Cox H J, Rhodes P G, Cai Z. Neuroprotection of alpha-phenyl-N-tert-butyl-nitrone on the neonatal white matter is associated with anti-inflammation. Neurosci Lett 2006; 405: 52–56
  • Dubois C M, Laprise M H, Blanchette F, Gentry L E, Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 1995; 270: 10618–10624

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.