168
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Intravitreal bevacizumab alters type IV collagenases and exacerbates arrested alveologenesis in the neonatal rat lungs

, , ORCID Icon, , , & show all
Pages 120-133 | Received 23 Aug 2016, Accepted 12 Mar 2017, Published online: 14 Apr 2017

References

  • Shah PK, Narendran V, Tawansy KA, Raghuram A, Narendran K. Intravitreal bevacizumab (Avastin) for post laser anterior segment ischemia in aggressive posterior retinopathy of prematurity. Indian J Ophthalmol. 2007;55:75–76.
  • Mintz-Hittner HA, Kennedy KA, Chuang AZ. BEAT-ROP cooperative group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. New England Journal of Medicine. 2011;364:603–615.
  • Mintz-Hittner HA. Treatment of retinopathy of prematurity with vascular endothelial growth factor inhibitors. Early Hum Dev. 2012;88:937–941.
  • Hård AL, Hellström A. On safety, pharmacokinetics and dosage of bevacizumab in ROP treatment – a review. Acta Paediatr. 2011;100:1523–1527.
  • Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 2002;283:L555–L562.
  • Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, et al. VEGF is required for growth and survival in neonatal mice. Development. 1999;126:1149–1159.
  • Galambos C, Ng YS, Ali A, Noguchi A, Lovejoy S, D'Amore PA, et al. Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol. 2002;27:194–203.
  • Kumar VH, Ryan RM. Growth factors in the fetal and neonatal lung. Front Biosci. 2004;9:464–480.
  • Tambunting F, Beharry KDA, Waltzman J, Modanlou HD. Lung vascular endothelial growth factor signaling is impaired in extremely premature baboons developing bronchopulmonary dysplasia/chronic lung disease. J Investig Med. 2005;5:1–11.
  • Doyle LW, Ford G, Davis N. Health and hospitalizations after discharge in extremely low birth weight infants. Semin Neonatol. 2003;8:137–145.
  • Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–1729.
  • Hasan J, Beharry KD, Valencia AM, Strauss A, Modanlou HD. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease. Pediatrics. 2009;123:1541–1547.
  • Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structure evolution and diversification. Federation of American Societies for Experimental Biology. 1998;12:1075–1095.
  • Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1, −2, and −9, and tissue inhibitor of metalloproteinases −2 in interstitial lung diseases. Lab Invest. 1998;78:687–698.
  • Matrisan LM. The matrix-degrading metalloproteinases. Bioessays. 1992;14:455–463.
  • Woessner Jr J. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Federation of American Societies for Experimental Biology. 1991;5:2145–2154.
  • Hu J, Chen C, Su Y, DU J, Qian X, Jin Y. Vascular endothelial growth factor promotes the expression of cyclooxygenase 2 and matrix metalloproteinases in Lewis lung carcinoma cells. Exp Ther Med. 2012;4:1045–1050.
  • Baker AH, Zaltsman AB, George SJ, Reuby AC. Divergent effects of tissue inhibitor of metalloproteinases-1, −2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1998;101:1478–1487.
  • Katzentein AL, Myers JL. Idiopathic pulmonary fibrosis. Clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998;157:1301–1315.
  • Crouch E. Pathobiology and pulmonary fibrosis. Am J Physio Lung Cell Mol Physiol. 1990;259:L159–L184.
  • Raghu G, Striker L, Hudson LD, Striker GE. Extracellular matrix in normal and fibrotic lungs. Am Rev Respir Dis. 1985;131:281–289.
  • Gomez D, Alonzo D, Yoship U, Thorgeinsson P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74:111–122.
  • Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, De Carlo A, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4:197–250.
  • Seiki M. Membrane-type matrix metalloproteinases. Acta Pathalogica, Microbiologica, et Immunologica Scandinavica. 1999;107:137–143.
  • Di Fiore JM, Martin RJ, Gauda EB. Apnea of prematurity-perfect storm. Respir Physiol Neurobiol. 2013;189:213–222.
  • Singer L, Martin RJ, Hawkins SW, BensonSzekely LJ, Yamashita TS, Carlo WA. Oxygen desaturation complicates feeding in infants with bronchopulmonary dysplasia after discharge. Pediatrics. 1992;90:380–384.
  • Di Fiore JM, Kaffashi F, Loparo K, et al. The relationship between patterns of intermittent hypoxia and retinopathy of prematurity in preterm infants. Pediatr Res. 2012;72:606–612.
  • Morin J, Luu TM, Superstein R, Ospina LH, Lefebvre F, Simard MN, et al. Canadian neonatal network and the Canadian neonatal follow-up network investigators. neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics. 2016;137(4):e20153218.
  • Coleman R, Beharry KD, Brock RS, Abad-Santos P, Abad-Santos M, Modanlou HD. Effects of brief clustered versus dispersed hypoxiv episodes on systemic and ocular growth factors in a rat model of OIR. Pediatr Res. 2008;64:50–55.
  • Brock RS, Gebrekristos BH, Kuniyoshi KM, Modanlou HD, Falcao MC, Beharry KD. Biomolecular effects of JB1 (an IGF-I peptide analog) in a rat model of oxygen-induced retinopathy. Pediatr Res. 2011;69:35–41.
  • Beharry KD, Cai CL, Sharma P, et al. Hydrogen peroxide accumulation in the choroid during intermittent hypoxia increases risk of severe oxygen-induced retinopathy in neonatal rats. Investigative Ophthalmology and Visual Science. 2013;54:7644–7657.
  • Chang M, Bany-Mohammed F, Kenney MC, Beharry KD. Effects of a superoxide dismutase mimetic on biomarkers of lung angiogenesis and alveolarization during hyperoxia with intermittent hypoxia. Am J Transl Res. 2013;5:594–607.
  • Jivabhai-Patel S, Bany-Mohammed F, McNally L, et al. Exogenous superoxide dismutase mimetic without scavenging H2O2 causes photoreceptor damage in a rat model for oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2015;56:1665–1677.
  • Tu C, Beharry KD, Shen X, et al. Proteomic profiling of the retinas in a neonatal rat model of oxygen-induced retinopathy with a reproducible ion-current-based MS1 approach. J Proteome Res. 2015;14:2109–2120.
  • Aranda JV, Cai CL, Ahmad T, Bronshtein V, Sadeh J, Valencia GB, et al. Pharmacologic synergism of ocular ketorolac and systemic caffeine citrate in rat oxygen-induced retinopathy. Pediatr Res. 2016;80(4):554–565.
  • Berkowitz BA, Kowluru RA, Frank RN, Kern TS, Hohman TC, Prakash M. Subnormal retinal oxygenation response precedes diabetic-like retinopathy. Invest Ophthalmol Vis Sci. 1999;40:2100–2105.
  • Romano MR, Biagioni F, Besozzi G, Carrizzo A, Vecchione C, Fornai F, et al. Effects of bevacizumab on neuronal viability of retinal ganglion cells in rats. Brain Res. 2012;1478:55–63.
  • Johnsen-Soriano S, Arnal E, Sancho-Tello M, Muriach M, Almansa I, Bosch-Morell F, et al. Intravitreal injection of bevacizumab induces inflammatory alterations in a uveitis experimental model. Eur J Ophthalmol. 2011;21:427–433.
  • Burri PH. The postnatal growth of rat lung: 111. Morphology Anat Rec. 1974;180:77–98.
  • Burri PH. Postnatal development and growth. In: Crystal RG, West JB, Barnes PJ, Weibel ER, eds. The Lung: Scientific Foundations (2nd Ed.). Philadelphia, PA: Lippincott-Raven; 1997:1013–1034.
  • Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003;28:12–24.
  • Chakrabarti S, Patel KD. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp Lung Res. 2005;31:599–621.
  • Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, et al. TIMP-1, −2, −3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279:L562–L574.
  • Arden MG, Adamson IYR. Collagen degradation during postnatal lung growth in rats. Pediatr Pulmonol. 1992;14: 95–101.
  • Arden MG, Spearman MA, Adamson IYR. Degradation of type IV collagen during the development of fetal rat lung. Am J Respir Cell Mol Biol. 1993;9:99–105.
  • Danan C, Jarreau P-H, Franco M-L, Dassieu G, Grillon C, Alsamad A, et al. Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1086–L1093.
  • Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320:365–376.
  • Valencia AM, Beharry KD, Ang JG, Devarajan K, Van Woerkom R, Abrantes M, et al. Early postnatal dexamethasone influences matrix metalloproteinase-2 and −9, and their tissue inhibitors in the developing rat lung. Pediatr Pulmonol. 2003;35:456–462.
  • Tambunting F, Beharry KD, Hartleroad J, Waltzman J, Stavitsky Y, Modanlou HD. Increased lung matrix metalloproteinase-9 levels in extremely premature baboons with bronchopulmonary dysplasia. Pediatr Pulmonol. 2005;39:5–14.
  • Fukunaga S, Ichiyama T, Maeba S, Okuda M, Nakata M, Sugino N, et al. MMP-9 and TIMP-1 in the cord blood of premature infants developing BPD. Pediatr Pulmonol. 2009;44:267–272.
  • Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA, et al. Low levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop chronic lung disease. Pediatrics. 2004;113:1709–1714.
  • Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P, et al. Matrix metalloproteinases-2, −8, and −9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics. 2001;108:686–692.
  • Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY. MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res. 2004;55:794–801.
  • Bar-Or A, Nuttall RK, Duddy M, Alter A, Kim HJ, Ifergan I, Pennington CJ, et al. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain. 2003;126:2738–2749.
  • Ochs RH, Fischman AP. Depositional diseases of the lungs. In: Fishman AP, Elias JA, Grippi MA, eds. Fishman's Pulmonary Diseases and Disorders (3rd Ed.). New York, NY: McGraw-Hill; 1998, Chap. 75:1151–1161.
  • Fredriksson K, Liu XD, Lundahl J, Klominek J, Rennard SI, Skold CM. Red blood cells increase secretion of matrix metalloproteinases from human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol. 2006;290:L326–L333.
  • Altshuler ME, Penn AH, Yang JA, Kim G-R, Schmid-Schönbein GW. Protease activity increases in plasma, peritoneal fluid, and vital organs after hemorrhagic shock in rats. PLOS ONE. 2012;7:e32672.
  • Sweet DG, Curley AE, Chesshyre E, Pizzotti J, Wilbourn MS, Halliday HL, Warner JA. The role of matrix mealloproteinases-9 and −2 in development of neonatal chronic lung disease. Acta Paediatr. 2004;93:791–796.
  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell. 2002;2:289–300.
  • Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase-1, −2, or −3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1988;101:1478–1487.
  • Gómez D, Alonso D, Yoshiji U, Thorgeirsson P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74:111–122.
  • Guedez L, Stetler-Stevenson WG, Wolff L, Wang L, Fukushima P, Mansoor A, et al. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest. 1998;102:2002–2010.
  • Dik WA, van Kaam AH, Dekker T, et al. Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome. Biol Neonat. 2006;89:6–14.
  • Chetty A, Cao G-J, Severgnini M, et al. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol. 2008;295:L584–L592.
  • Lukkarinen H, Hogmalm A, Lappalainen U, Bry K. Matrix metalloproteinase-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2009;41:59–68.
  • Hosford G, Fang X, Olson DM. Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization. Pediatr Res. 2004;56:26–34.
  • Gill SE, Huizar I, Bench EM, Sussman SW, Wang Y, Khokha R, et al. Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. Am J Pathol. 2010;176:64–73.
  • Gill SE, Gharib SA, Bench EM, Sussman SW, Wang RT, Rims C, et al. Tissue inhibitor of metalloproteinases-3 moderates the proinflammatory status of macrophages. Am J Respir Cell Mol Biol. 2013;49:768–777.
  • Gill SE, Pape MC, Khokha R, Watson AJ, Leco KJ. A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Dev Biol. 2003;261:313–323.
  • Elias GJ, Ioannis M, Theodora P, Dimitrios PP, Despoina P, Kostantinos V, et al. Circulating tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) in systemic sclerosis patients with elevated pulmonary arterial pressure. Mediators Inflamm. 2008;2008:164134.
  • Thurlbeck WM. Lung growth and development. In: Thulbeck WM, Chung AM, eds. Pathology of the Lung (2nd Ed). New York, NY: Thieme Medical Publishers; 1995:37–87.
  • D'Angio CT, Maniscalco WM. The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci. 2002;7:d1609–d1623.
  • Bhandari V. Disruption of lung microvascular development. In: Abman SH, ed. Bronchopulmonary Dysplasia. New York, NY: Informa Healthcare; 2010:146–166.
  • Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164:1971–1980.
  • Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv Exp Med Biol. 2010;661:323–335.
  • Been JV, Debeer A, van Iwaarden JF, Kloosterboer N, Passos VL, Naulaers G, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia. Pediatr Res. 2010;67:83–89.
  • Tang JR, Karumanchi SA, Seedorf G, Markham N, Abman SH. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302:L36–L46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.